Corrosion Science Knowledge Area  

by Richard A. Hays, for the Director, Corrosion Policy & Oversight (DASD) [Materiel Readiness]

Updated: 03-31-2020



Corrosion is most often associated with "rust" on steel and the oxidation of other metals. However, 10 U.S.C. § 2228 defines corrosion is, "the deterioration of a material or its properties due to a reaction of that material with its chemical environment." It is inclusive of the deterioration of all materials, which can be caused through sun exposure, mold and mildew, wind, and other environmental elements.


Understanding the scope of this definition requires an explanation of the "Science of Corrosion." Other sections of the WBDG CPC Source explain the impacts and possible solutions for the control of corrosion. Figures 1 and 2 provide two vivid examples of corrosion on metals. Further explanation will be addressed in this Corrosion Science Page.

Figure 1 - Advanced metallic corrosion
Figure 1 - Advanced metallic corrosion

Figures 1 and 2 — Advanced metallic corrosion.
Photo credit: D, CPO

Environmental Severity Factors Influencing Corrosion

There are several environmental severity factors that influence corrosion. These include but are not limited to:

  • Temperature
  • Time-of-Wetness
  • Presence of chloride
  • pH
  • Industrial pollutants
  • uV radiation
  • Microbiological activity

These factors influence the degradation of materials in multiple ways. None are the same, but the impact, unless mitigated can be devastating. Corrosion affects metals, wood, pavements, fabrics, roofs, and building systems. The International Standards Organization (ISO) has a straight-forward approach to categorizing a region's corrosivity. As shown on the ISO Corrosivity Map in Figure 3, coastal areas tend to represent a higher corrosion threat due to the presence of chlorides and moisture in the presence of heat.

While this is a good start to understanding the risks associated with environmental severity factors, local area considerations of climate, industrial impacts and intense solar exposures may result in higher corrosion rates than one would expect from only the presence of chlorides. It is prudent to investigate and understand environmental severity impacts for specific building and construction sites to establish the local corrosivity risk. See the Environmental Severity Page for a more extensive explanation related to this risk area.

Figure 2 - ISO Corrosivity Categories (U.S. ICCET Corrosivity Heat Map)

Figure 3 - ISO Corrosivity Categories (U.S. ICCET Corrosivity Heat Map)
Photo credit: Map Data © 2016 Google, INEGI

The Electrochemical Cell and Corrosion

There are several forms of metallic corrosion and all occur because of the electrochemical cell. There are four fundamental components in an electrochemical corrosion cell: An anode, a cathode, an electron path (electrical connection) between the anode and cathode, and, a conducting environment (electrolyte (see Figure 4). All four components must be present for corrosion to occur. Metal at the anode is oxidized causing it to lose mass or "corrode". The electrons that are produced as a result of this reaction travel to the cathode through the metallic path. The over-abundance of electrons at the cathode prevent it from corroding. Most common electrolyte mediums are water, soil, and chloride contaminated concrete. The electron path is an electrical connection, usually with some amount of resistance. It can be internal to the metal itself or external such as a wire, direct connection, or other interconnecting metallic components.

Figure 3 - Basic Corrosion Cell

Figure 4 — Basic Corrosion Cell
Diagram credit: D, CPO

The forms of corrosion in a given system depend on the materials, configuration, operation, and environment. The types and extent of cathodic protection, coating, etc. depend upon the corrosion risk factors discussed in this webpage. See the CPC Source Knowledge Area - Cathodic Protection for more information.

Identifying and Recognizing Common Forms of Corrosion

The common forms of corrosion include (See Table 1, Figure and 5):

  • Uniform (General) Corrosion
  • Pitting
  • Crevice
  • Galvanic Corrosion
  • Erosion Corrosion
  • Inter-granular
  • Selective leaching/de-alloying
  • Stress Corrosion Cracking
  • Solar Ultraviolet degradation
  • Others (e.g. Exfoliation, Environmentally Assisted Cracking, Corrosion Fatigue)

Table 1 - Common Depictions of Corrosion

Table 1 - Common Depictions of Corrosion
Photo credit: D, CPO

Here is a summary description of the major forms of corrosion that you might expect to see in almost any locale regardless of the environmental severity of the location:

  • Uniform (general) is a form of corrosion that occurs uniformly over the entire exposed surface of a metal. Applying a barrier coating is one of the most common methods to mitigate this degradation

  • Pitting is a form of localized corrosion that occurs when a corrosive medium attacks a metal at specific points and results in deep cavities in the metal

  • Crevice is a form of corrosion that occurs when an electrolyte becomes trapped and stagnant in particular locations such as in joints, corners, and under debris. It can be hard to find and extremely aggressive causing high pitting rates and subsequent unexpected failures

  • Galvanic corrosion results from the formation of a galvanic cell by the galvanic coupling of dissimilar metals (metals having different electrical potentials), which are exposed to an electrolyte. This form can be very aggressive but it may also be one of the easiest to detect and prevent

  • Erosion corrosion is due to the increased rate of deterioration and loss of a material from the combined effects of corrosion and the repeated motion of the surrounding environment. Most often found in high velocity areas or in fluids containing abrasive materials

  • Intergranular is a form of corrosion that attacks grain boundaries in materials. It may occur as a result of a galvanic couple between differing phases within a material and may be prevented by avoiding susceptible alloy or heat treatments

  • Selective Leaching or De-alloying is a localized form of corrosion where a particular element within a material is preferentially attacked and extracted from the material. Many copper alloys are susceptible alloy to this attack

  • Stress Corrosion Cracking (SCC) is a cracking process involving the combined factors of a susceptible material, corrosive environment and a sustained tensile stress

  • Solar Ultraviolet Degradation is the process by which organic-based polymers, used in the building and construction industry, undergo photolytic and photo-oxidative reactions during exposure to solar UV radiation

  • Other types of Corrosion:

    • Environmentally Assisted Cracking is a combination of a tensile stress, a corrosive environment, and a susceptible material; stress disrupts protective films at crack tip; the corrosion process generates atomic hydrogen that reduces cracking resistance of material; and, usually occurs on very high strength materials such as fasteners

    • Corrosion Fatigue - Fatigue resistance of most materials is reduced in the presence of a corrosive environment; corrosion processes that occur at crack tips increase the rate of fatigue crack growth; and, it occurs in structural materials such as aluminum and steel

    • Alkali Silica reaction on concrete occurs over time in concrete between the highly alkaline cement paste and the reactive non-crystalline (amorphous) silica found in many common aggregates, given sufficient moisture. This reaction causes the expansion of the altered aggregate causing spalling and loss of strength of the concrete, finally leading to its failure

  • Environmental Factors that Increase Corrosion Risk:

    • Mold requires four factors to be present (i.e. mold spores, organic matter (like wood, paper, and drywall), moisture, and warmth) in order to grow or become established. See Mold and Moisture Dynamics, UFCs and UFGSs that address the various aspects of designing and maintaining to prevent and mitigate the impacts of mold. For example, see the applicable sections of UFC 3-101-01 Architecture for more information.

    • Soil resistivity and moisture occurs when:

      • More acidic soils (pH 0 - 4.5) may represent a serious risk to common construction materials and metal (Soils usually have a pH range of 4.5 - 8.0)

      • Soils acidity is produced by mineral leaching, decomposition of acidic plants, industrial wastes, acid rain and certain forms of micro-biological activity

    • Chlorides, Sulphides, & Bacteria:

      • Chloride ions are harmful, as they participate directly in pitting initiation of metals and their presence tends to decrease the soil resistivity. They may be found naturally in soils as result of brackish groundwater and historical geological sea beds or from external sources such as de- icing salts

      • Sulphates are generally considered to be less aggressive, however sulphates can be converted to highly corrosive sulphides by anaerobic sulphate reducing bacteria. These microorganisms normally operate in temperatures from 20 to 30 °C, pH from 6 to 8, and soil resistivities from 500 to 20,000 Ω

      • Bacteria are ubiquitous and their presence can influence the initiation and/or propagation of corrosion. Fuel storage and handling systems are particularly susceptible to “Microbiologically Influenced Corrosion (MIC)”. See CPC Source — Petroleum, Oil, and Lubricants (POL) Storage and Distribution Systems Knowledge Area for more specific insights into the impacts of MIC on POL Systems.

General & Crevice Corrosion of Steel
Degradation of fabrics (tropical environment)
Alkali-Silica Reaction in Concrete

General & Crevice Corrosion of Steel
Photo Source: D, CPO

Degradation of fabrics (tropical environment)
Photo Source: D, CPO

Alkali-Silica Reaction in Concrete
Photo Source: D, CPO

Environmentally Influenced Cracking
uV Degradation of Organic Coating System

Environmentally Influenced Cracking
Photo Source: D, CPO

uV Degradation of Organic Coating System
Photo Source: D, CPO

Figure 5 — Additional images of corrosion forms. Photo Credit: D, CPO


It is important to recognize the types of corrosion as well as the susceptibility of the materials where corrosion can occur. Knowledge of the basics of Corrosion Science basics, materials and the ability to recognize the signs of corrosion will assist in the development of a mitigation strategy and pursuit of associated actions that will serve to reduce life cycle costs, extend facility durability and sustainability.

Here are a few examples of associated actions that will reduce life cycle costs and help improve facility durability:

  • Avoid using aluminum alloys in highly alkaline and highly acidic environments
  • Coat steels to protect them from chloride containing media such as seawater and deicing materials
  • Apply "cathodic protection" to protect immersed or buried steel structures
  • Add UV blockers to protect organic materials such as coating systems and fabrics in high solar exposures
  • Use dehumidification in marine and tropical areas
  • Consider the impacts of heat and chlorides in association with other corrosion-impacting factors
  • Treated and coated wood products should be used when in contact with soils and in waterfront environments
  • Use coatings appropriate for the intended use to protect structures
  • Good construction and maintenance practices accompanied by appropriate material selection and surface treatments will contribute to the reduction of the impacts of Ultra-violet degradation on asphaltic materials in pavements and roofs
  • Appropriate concrete cover and coatings should be used to minimize spalling in reinforced concrete structures

The CPC Source provides additional knowledge and practical information to help the Architect, Engineer, Facility Management and Acquisition professionals make the right corrosion related decision. The relevant UFC and UFGS criteria will provide insights and guidance on the best approach to mitigate the impacts of corrosion and the associated environmental factors increasing those risks.

Relevant Codes and Standards

International Organization for Standardization (ISO)

  • ISO 9223:2012 Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation
  • ISO 9226:2012 Corrosion of metals and alloys - Corrosivity of atmospheres - Determination of corrosion rate of standard specimens for the evaluation of corrosivity
  • ISO/TC 156/WG4 ISOCORRAG International Atmospheric Exposure Program: Summary of Results

Additional Resources




Obtaining SME Assistance for DoD Installations

Federal Facility Criteria: