SECTION TABLE OF CONTENTS

DIVISION 09 - FINISHES

SECTION 09 97 10.00 10

METALLIC COATINGS FOR HYDRAULIC STRUCTURES

05/09

PART 1 GENERAL

1.1 LUMP SUM PRICE
 1.1.1 Payment
 1.1.2 Unit of Measure

1.2 REFERENCES

1.3 DEFINITIONS
 1.3.1 Metallizing
 1.3.2 Wire Flame-Spray
 1.3.3 Arc-Spray

1.4 SYSTEM DESCRIPTION
 1.4.1 General Requirements
 1.4.2 Worker Hazard Communication Program
 1.4.3 Surface Preparation Procedures
 1.4.3.1 Abrasive Blasting
 1.4.3.2 Hoses and Nozzles
 1.4.3.3 Workers other than Blasters
 1.4.3.4 Personal Protective Equipment
 1.4.4 Metallizing Equipment
 1.4.4.1 Pressure Systems
 1.4.4.2 Flame-Spray Equipment
 1.4.4.3 Arc-Spray Equipment
 1.4.5 Cleaning
 1.4.5.1 Compressed Air
 1.4.5.2 Solvents
 1.4.6 Other Submittals Requirements

1.5 SUBMITTALS

1.6 QUALITY ASSURANCE
 1.6.1 Contractor Qualifications and Experience
 1.6.2 Arc Spray Equipment Qualification
 1.6.3 Metallizing Applicator Qualification
 1.6.4 Coating Inspector Qualifications and Experience
 1.6.5 Metallized Coating Thickness Gage Qualification
 1.6.6 Competent Person Qualifications and Experience
 1.6.7 Safety and Health Provisions
1.6.7.1 Electrical Shock Prevention
1.6.7.2 Respiratory Protection Program
1.6.7.3 Eye Protection
1.6.7.4 Hearing Protection
1.6.7.5 Protective Clothing
1.6.7.6 Ventilation
1.6.7.7 Toxic Materials
1.6.7.8 Air Sampling
1.6.7.9 Medical Surveillance

1.7 DELIVERY, STORAGE, AND HANDLING
1.7.1 Metallizing Wire
1.7.2 Sealers and Paints

1.8 ENVIRONMENTAL REQUIREMENTS

PART 2 PRODUCTS

2.1 METALLIZING WIRE
2.2 SEALER AND PAINT
2.3 ABRASIVE MEDIA

PART 3 EXECUTION

3.1 PREPARATION
3.1.1 Pit, Edge, and Weld Preparation
3.1.2 Abrasive Blasting
3.1.3 Protection

3.2 METALLIZING APPLICATION
3.2.1 Metallizing Application Technique
3.2.2 Metallizing Appearance
3.2.3 Metallizing Thickness
3.2.3.1 System No. 1-Z
3.2.3.2 System No. 2-Z
3.2.3.3 System No. 3-Z
3.2.3.4 System No. 4-Z-A
3.2.3.5 System No. 5-Z-A
3.2.3.6 System No. 6-Z-A
3.2.3.7 System No. 7-A
3.2.3.8 System No. 8-A
3.2.4 Metallizing Adhesion
3.2.5 Time Between Surface Preparation and Metallizing
3.2.6 Time Between Metallizing and Painting
3.2.7 Approved Methods of Metallizing

3.3 FIELD INSPECTION
3.3.1 Quality Control Inspection and Testing
3.3.1.1 Ambient Conditions Inspection
3.3.1.2 Presurface Preparation Inspection
3.3.1.3 Surface Preparation Inspection
3.3.1.3.1 Abrasive Blast Air Cleanliness
3.3.1.3.2 Recycled Blast Media Cleanliness and Shape
3.3.1.3.3 Blast Profile
3.3.1.3.4 Contaminants on Prepared Surface
3.3.1.4 Metallized Coating Inspection
3.3.1.4.1 Equipment Setup Validation Bend Test
3.3.1.4.2 Atomization Air Cleanliness
3.3.1.4.3 Metallized Coating Appearance
3.3.1.4.4 Metallized Coating Thickness
3.3.1.4.5 Metallized Coating Adhesion
3.3.2 Quality Assurance Hold Point Evaluations
3.3.2.1 Surface Preparation Quality Assurance Hold Point Evaluation

SECTION 09 97 10.00 10 Page 2
3.3.2.2 Metallized Coating Quality Assurance Hold Point Evaluation
3.3.2.3 Sealed System Quality Assurance Hold Point Evaluation

3.4 METALLIZING SYSTEMS TO BE APPLIED
3.5 SPECIAL PAINTING INSTRUCTIONS
3.6 METALLIZING SYSTEMS AND METALLIZING SCHEDULE

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for preparation of surfaces and application of metallized coatings for hydraulic structures. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTES: The protective metallic coating systems listed have limited applicability at this time. Some states and municipalities have stringent regulations governing the use of architectural coatings containing volatile organic compounds (VOC). Many of the coating systems found in Section 09 97 02 PAINTING: HYDRAULIC STRUCTURES, do not meet VOC regulations in some regions of the country.

The coating systems contained herein are suitable substitutes for the paint systems in Section 09 97 02 and may be used should air pollution regulations so
dictate. It should be noted that some of the sealer and paint coats recommended in this guide may also not be VOC-compliant in some regions of the country.

The use of metallizing system 6-Z-A is advocated for use on steel immersed in very turbulent, ice- and debris-laden fresh waters. Exposures such as this may erode and cause total failure of the standard abrasion-resistant paint systems found in Section 09 97 02 in as little as 1 year. System 6-Z-A, with appropriate sealing and top coating, will provide superior protection for this type of severe service.

The use of metallizing system 8-A is endorsed for high temperature atmospheric exposures. Paint coatings do not generally perform as well as thermal spray coatings of aluminum for high temperature exposures such as stacks. The use of metallizing system 6-Z-A is recommended for use as a zebra mussel repellent coating where the use of such a coating is deemed necessary. System 6-Z-A is longer lived and has a lesser environmental impact than conventional copper-containing antifouling coatings. The use of this guide specification should be limited to work described in this note.

The metallizing systems described in this document are intended for corrosion protection of cold and hot rolled steel. Metallizing systems described herein are not intended for use on stainless steel, aluminum, bronze, copper, plastic, rubber, wood, masonry, and painted surfaces. Coating systems contained herein should not be specified for potable water tank interiors, moving parts or wear surfaces of machinery, or for surfaces subject to strong acids or bases.

For further technical assistance contact:

US Army Construction Engineering Research Laboratory
Attn: CECER-FL-M (Tel 217-373-7237)
P.O. Box 9005
Champaign, IL 61826-9005

**
1.1 LUMP SUM PRICE

NOTE: If Section 01 22 00.00 10 PRICE AND PAYMENT PROCEDURES is included in the project specifications, this paragraph title (LUMP SUM PRICE) should be deleted from this section and the remaining appropriately edited subparagraphs below should be inserted into Section 01 22 00.00 10.

1.1.1 Payment

Payment will constitute full compensation for furnishing all plant, labor,
materials and equipment and performing all operations necessary for metallizing hydraulic structures as specified.

1.1.2 Unit of Measure

Unit of measure: Lump Sum

1.2 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY FOR QUALITY (ASQ)

ANSI/ASQ Z1.4 (2008; R 2013) Sampling Procedures and Tables for Inspection by Attributes

AMERICAN WELDING SOCIETY (AWS)

AWS A5.01M/A5.01 (2013) Procurement Guidelines for Consumables - Welding and Allied Processes - Flux and Gas Shielded Electrical Welding Processes

ASTM INTERNATIONAL (ASTM)

ASTM D4285 (1983; R 2012) Indicating Oil or Water in Compressed Air
ASTM D4417 (2019) Field Measurement of Surface Profile of Blast Cleaned Steel

COMPRESSED GAS ASSOCIATION (CGA)

INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)

ANSI/ISEA Z87.1 (2015) Occupational and Educational Personal Eye and Face Protection Devices

ANSI/ISEA Z89.1 (2014) American National Standard for Requirements for Industrial Head Protection

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2019; TIA 19-1; TIA 19-2; TIA 19-3; TIA 19-4; ERTA 1 2019) National Electrical Code

NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH)

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC AB 1 (2015; E 2017) Mineral and Slag Abrasives

SSPC AB 2 (2015; E 2016) Cleanliness of Recycled Ferrous Metallic Abrasive

SSPC AB 3 (2003; E 2004) Ferrous Metallic Abrasive

SSPC SP 5/NACE No. 1 (2007) White Metal Blast Cleaning

U.S. ARMY CORPS OF ENGINEERS (USACE)

1.3 DEFINITIONS

1.3.1 Metallizing

Refers to any of several application methods for depositing sprayed-metal coatings.

1.3.2 Wire Flame-Spray

A metallizing process in which metallic wire is melted in an oxygen and fuel gas flame and is dispersed with an airstream.

1.3.3 Arc-Spray

A metallizing process in which metallic wire is melted by an electric arc and is dispersed with an airstream.

1.4 SYSTEM DESCRIPTION

Prepare a thermal spray Job Reference Standard (JRS) at the jobsite prior to the onset of production work. The JRS is used at the initiation of the contract to qualify the surface preparation, thermal spray application, and sealing processes and also serves as a standard of quality in case of dispute. To prepare the JRS, a steel plate of the same alloy as the surfaces to be metallized measuring 600 x 600 x 10 mm 2 feet x 2 feet x 3/8 inch shall be solvent and abrasive blast cleaned in accordance with the requirements of the contract. The abrasive blast media and equipment shall be those that will be used on the job. One-fourth of the JRS plate shall be masked with sheet metal and the thermal spray coating applied to the unmasked portion of the plate. The thermal spray coating shall be applied using the same equipment, approved wire, and spray parameters to be used on the job. Operate the gun in a manner substantially the same as will be used on the job. The approximate traverse speed and standoff distance during spraying shall be measured and recorded. Once the JRS is qualified, the operating parameters shall not be altered, except as necessitated by the requirements of the job. Two-thirds of the thermal spray coated portion of the JRS shall be sealed in accordance with the requirements of the contract. One-half of the sealed area shall be painted in accordance with the contract if applicable. Apply the sealer and paint using the same paint spray equipment that will be used for production. The prepared JRS shall be preserved and protected in such a manner that it remains dry and free of contaminants for the duration of the contract. The surface cleanliness, blast profile shape and depth, thermal spray appearance, thickness, and adhesion, and sealer and paint thicknesses shall be determined by the Coating Inspector in accordance with the contract requirements and recorded.

1.4.1 General Requirements

Perform the work in accordance with the requirements of 29 CFR 1910,
29 CFR 1926, EM 385-1-1, and other references as listed herein. Submit matters of interpretation of the standards to the Contracting Officer for resolution before starting work. Where the regulations conflict, the most stringent requirements shall apply. This paragraph, with its subparagraphs, supplements the requirements of EM 385-1-1. In any conflict between Section 01 of EM 385-1-1 and this paragraph, the provisions herein shall govern. Submit a Safety Indoctrination Plan as specified in the Submittals paragraph.

1.4.2 Worker Hazard Communication Program

Submit the written program describing how the program is to be implemented, labels and other forms of warning, Safety Data Sheets (SDS), chemical inventory, employee information and training, methods the Contractor will use to inform employees of hazards associated with nonroutine tasks and unlabeled pipelines, and the methods the Contractor will use to inform Government employees and subContractors of chemical hazards. The following items shall be discussed in the program: 1) Airborne metal dusts, finely divided solids, or other particulate accumulations shall be treated as explosive materials. 2) Proper ventilation, good housekeeping, and safe work practices shall be maintained to prevent the possibility of fire and explosion. 3) Thermal-spray equipment shall not be pointed at a person or flammable material. 4) Thermal spraying shall not be done in areas where paper, wood, oily rags, or cleaning solvents are present. 5) Conductive safety shoes shall be worn in any work area where explosion is a concern. 6) During metallizing operations, including the preparation and finishing processes, employees shall wear protective coveralls or aprons, hand protection, eye protection, hearing protection, and respiratory protection. 7) The Accident Prevention Plan as specified in the Submittals paragraph.

1.4.3 Surface Preparation Procedures

1.4.3.1 Abrasive Blasting

Comply with the requirements in Section 06.H of EM 385-1-1.

1.4.3.2 Hoses and Nozzles

In addition to the requirements in Section 20 of EM 385-1-1, use hoses and hose connections of a type to prevent shock from static electricity. Hose lengths shall be joined together by approved couplings of a material and type designed to prevent erosion and weakening of the couplings. The couplings and nozzle attachments shall fit on the outside of the hose and shall be designed to prevent accidental disengagement.

1.4.3.3 Workers other than Blasters

Protect workers, other than blasting operators working in close proximity to abrasive blasting operations, by utilizing MSHA/NIOSH-approved half-face or full-face air purifying respirators equipped with high-efficiency particulate air (HEPA) filters, eye protection meeting or exceeding ANSI/ISEA Z87.1 and hearing protectors (ear plugs and/or ear muffs) providing at least 20 dBA reduction in noise level.

1.4.3.4 Personal Protective Equipment

Blasting operators shall wear heavy canvas or leather gloves and apron or
coveralls. Safety shoes shall be worn to protect against foot injury. Hearing protection shall be used during all blasting operations.

1.4.4 Metallizing Equipment

Submit for approval a tabulated list of equipment to be used on the job, including operating instructions.

1.4.4.1 Pressure Systems

Handle compressed gas cylinders in accordance with AWS Z49.1 and with CGA P-1. Only special oxidation-resistant lubricants may be used with oxygen equipment; grease or oil shall not be used. Install manifolding and pressure reducing regulators, flow meters, hoses, and hose connections in accordance with AWS Z49.1. Pressure connecting nuts shall be drawn up tight, but not over-tightened. If a fitting cannot be sealed without excessive force, it shall be replaced. Compressed air for thermal spraying or blasting operations shall be used only at pressures recommended by the equipment manufacturers. The air line shall be free of oil and moisture. Compressed air, oxygen, or fuel gas shall not be used to clean clothing.

1.4.4.2 Flame-Spray Equipment

Maintain and operate flame-spray equipment according to the manufacturer's instructions. Metallizing operators shall be fully trained in and familiar with specific equipment before starting an operation. Valves shall be properly sealed and lubricated. Friction lighters, pilot light, or arc ignition methods of lighting flame-spray guns shall be used. If a gun backfires, it shall be extinguished as soon as possible. Re-ignition of a gun that has backfired or blown out shall not be attempted until the cause of the trouble has been determined. Flame-spray guns or hoses shall not be hung on regulators or cylinder valves. Gas pressure shall be released from the hoses after equipment is shut down or when equipment will be left unattended. The pressure release sequence is as follows:

a. Close gun valves.

b. Close cylinder valve.

c. Open gun valves.

d. Turn regulator screw out until free.

e. Close gun valves.

f. Close tank valve or manifold valve ahead of regulator.

Oil shall not be allowed to enter the gas mixing chambers when cleaning flame-spray guns. Only special oxidation-resistant lubricants shall be used on valves or other parts of flame-spray guns that are in contact with oxygen or fuel gases.

1.4.4.3 Arc-Spray Equipment

Maintain and operate arc-spray equipment according to the manufacturer's instructions. Metallizing operators shall be fully trained in and familiar with specific equipment before starting an operation, in order to comply with the requirements in Section 14.C of EM 385-1-1.
1.4.5 Cleaning

1.4.5.1 Compressed Air

Perform cleaning with compressed air in accordance with Section 20.B.5 of EM 385-1-1; protect personnel as specified in 29 CFR 1910, Part 139.

1.4.5.2 Solvents

Provide ventilation where required by 29 CFR 1910, Part 146 or where the concentration of solvent vapors exceeds 10 percent of the Lower Explosive Limit (LEL). Ventilation shall be in accordance with 29 CFR 1910, Part 94, paragraph (c)(5). Sources of ignition shall not be permitted in the vicinity of solvent cleaning if there is any indication of combustible gas or vapor present. Take special precautions when metallizing materials that have been cleaned with hydrocarbon solvents. Make specific measurements to ensure that such solvent vapors are not present during metallizing operations, especially in confined spaces. Submit Confined Space Procedures as specified in the Submittals paragraph and including requirements for toxic materials and air sampling in confined spaces, as specified below. Collect representative air samples from the breathing zone of workers involved in the cleaning process to determine the specific solvent vapor concentrations. Provide personal protective equipment where required by 29 CFR 1910, Part 146 and in accordance with 29 CFR 1910, Subpart I.

1.4.6 Other Submittals Requirements

The following shall be submitted:

a. SDS for any product required to have them as specified in 29 CFR 1910, Part 1200 plus documentation of the safety indoctrination plan as described in Section 01.B of EM 385-1-1.

b. An Accident Prevention Plan, in accordance with the requirements of Section 01 of EM 385-1-1, including, but not limited to, each of the topic areas listed in Appendix A therein and the specified requirements; develop each topic in a concise manner to include management and operational aspects.

c. Detailed written standard operating procedures for confined spaces in accordance with 29 CFR 1910, Part 146, Section 6.I. of EM 385-1-1; the procedures shall include:

 (1) Certificates of calibration for all testing and monitoring equipment, including: type of equipment, model number, date of calibration, firm conducting calibration, and signature of individual certifying calibration.

 (2) Methods of inspection of personal protective equipment prior to use.

 (3) Work practices and other engineering controls designed to reduce airborne hazardous chemical exposures to a minimum.

 (4) Specification of the design and installation of ventilation systems which shall provide adequate oxygen content and provide for the dilution of paint solvent vapor, lead, and other toxic
particulates within the confined space. Include plans to evaluate the adequacy of air flow patterns.

e. A written plan for ventilation assessments to be performed by a qualified person for all confined-space work, solvent cleaning, abrasive blasting, and metallizing operations.

g. A tabulated list of metallizing equipment to be used on the job and a listing of the type, brand name, size gradation, and supplier of each type of abrasive blast media to be used on the job.

h. A written record of physical examinations provided to all employees who may be required to wear a respirator, who may be exposed to excessive noise levels, or who may be exposed to toxic contaminants, including statements signed by the examining physician for each employee stating that the exam included the minimum requirements and that the employee is medically fit to perform the work.

i. Documentation of the Contractor's qualifications and experience. Prior to submission of other required safety and health submittal items, a statement of qualifications and experience for the Competent Person. Documentation of coating inspector qualifications and experience.

j. A working standard of the metallized coating. A 1 kg 2.2 lb unused sample of each blast media to be used on the job. And one liter quart samples of each type and batch of sealer and paint to be used on the job.

k. A 300 mm 12 inch sample of each lot and type of wire to be used on the job. Store batches or lots of metallizing wire at the project site or segregate them at the source of supply sufficiently in advance of need to allow 30 days for sampling and testing. Notify the Contracting Officer when and where the metallizing wire is available for sampling. Perform all sampling in accordance with ANSI/ASQ Z1.4. Sampling of each lot will be witnessed by a representative of the Contracting Officer unless otherwise specified or directed. Samples of metallizing wire shall be clearly labeled to indicate type of coating material, lot number, date, and name of manufacturer, total weight represented by lots, and contract number.

l. A test report showing the results of the required tests performed on the metallized coating test plates for each applicator and a statement that the specified requirements are met. A test report showing the results of the tests required for the metallizing wire and the arc spraying equipment qualification. A test report showing the results of the required tests performed on the Job Reference Standard (JRS) and a statement that all of the contract requirements of surface preparation, metallized coating, sealing, and painting are represented by the JRS.
1.5 SUBMITTALS

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Safety Data Sheets
1.6 QUALITY ASSURANCE

1.6.1 Contractor Qualifications and Experience

Have a minimum of two years of documented experience in the field of thermal spray and shall have performed at least one similar project in the past.

1.6.2 Arc Spray Equipment Qualification

Each type and model of arc spray equipment to be used on the job shall be qualified in accordance with the requirements of this subpart. Under conditions of continuous use, the equipment shall be capable of keeping the actual current output, voltage, wire feed rate, atomization air pressure, and flow volume at set values and shall not deviate from them by more than 5 percent during a 15 minute period. The wire feed mechanism shall be designed for automatic alignment. When operated continuously for 15 minutes the equipment shall not sputter, pop, or stop operating. The equipment shall be capable of continuous start and stop operation for a minimum of fifteen cycles consisting of 10 seconds on and 5 seconds off, without fusing, sputtering or deposition of nodules. The applied coating shall be uniform and free of blisters, cracks, loosely adherent particles, nodules, or powdery deposits. The required measurements of operating performance shall be conducted and documented by the qualified Coating Inspector.
1.6.3 Metallizing Applicator Qualification

Perform the Applicator Qualification Test in the presence of the Contracting Officer unless otherwise specified or directed. Each worker to apply metallized coatings on the job shall be qualified in accordance with the requirements of this paragraph. Use test plates to qualify applicators at the start of a job. The test plates shall be 305 x 305 x 9.5 mm 12 x 12 x 0.375 inch flat steel and shall have the same chemical composition as the work surfaces to be coated. The cleaning method and abrasives used to prepare the test plate shall be the same as that to be used on the work surfaces. The blast profile shall be measured and recorded in accordance with ASTM D4417, Method C. The specified coating thickness shall be applied in not less than two half lapped passes applied at right angles to each other. The adhesive strength shall be tested in accordance with ASTM D4541 using a self-aligning Type IV adhesion tester. The adhesion strength shall be measured and recorded at five randomly selected locations. The average adhesion shall not be less than [6.9 kPa 1000 psi for 85-15 zinc-aluminum alloy] [11 kPa 1600 psi for aluminum] [5.2 kPa 750 psi for zinc]. No single adhesion measurement shall have a value of less than 80-percent of the specified minimum average adhesion. If the test fails it shall be repeated using a new test plate. If the test fails on the second plate the applicator will be deemed unacceptable. The specified surface profile and adhesion tests shall be conducted and documented by the qualified Coating Inspector.

1.6.4 Coating Inspector Qualifications and Experience

**
NOTE: Specify NACE Basic for most projects, NACE Certified for large or complex projects. The specifier may add a requirement for the qualified coating inspectors to be employed by an independent 3rd party inspection firm.
**

Submit documentation of certification for all coating inspectors. The minimum certification requirement is a [Basic] [Certified] Inspector under the National Association of Corrosion Engineers Coating Inspector Training and Certification Program. The documentation shall include the NACE inspector identification numbers, date of qualification, and expiration date. In addition to certification all coating inspectors shall as a minimum have performed coating inspection on at least one previous thermal spray job or have attended an SSPC tutorial on thermal spray coating application.

1.6.5 Metallized Coating Thickness Gage Qualification

Submit documentation of certification for all coating thickness gages. Use magnetic flux-type thickness gages, as described in ASTM D7091, Method B, to make all metallized coating thickness measurements. The gage shall have an accuracy of +/- 3 percent or better. Thickness gages to be used on the job shall be certified by the gage manufacturer as meeting these requirements.

1.6.6 Competent Person Qualifications and Experience

Utilize a qualified and competent person, as defined in Section 01 of EM 385-1-1, to develop the required safety and health submittal and to provide onsite safety and health services during the contract period.
person shall be a Certified Industrial Hygienist (CIH), an Industrial Hygienist (IH), or a Certified Safety Professional (CSP) with a minimum of 3 years of demonstrated experience in similar related work. Certify that the Certified Industrial Hygienist (CIH) holds current and valid certification from the American Board of Industrial Hygiene (ABIH), that the IH is considered board eligible by written confirmation from the ABIH, or that the CSP holds current and valid certification from the American Board of Certified Safety Professionals. The CIH, IH, or CSP may utilize other qualified and competent persons, as defined in EM 385-1-1, to conduct onsite safety and health activities as long as these persons have a minimum of 3 years of demonstrated experience in similar related work and are under the direct supervision of the CIH, IH, or CSP.

1.6.7 Safety and Health Provisions

1.6.7.1 Electrical Shock Prevention

Control of electrical shock shall include, but is not limited to, the following:

a. Ground protection for equipment and cords shall be present and in good condition.

b. Electrical outlets in use shall have Ground Fault Circuit Interrupters (GFCI) in addition to appropriate overcurrent protection.

c. Electrical circuit grounds and GFCI shall be tested before actual work begins.

d. Switches and receptacles shall have proper covers.

e. Damaged cords and equipment shall be immediately repaired or replaced.

f. Circuit breaker boxes shall be closed.

g. Cords shall be approved for wet or damp locations. The cords shall be hard usage or extra hard usage as specified in NFPA 70. Cords shall not be spliced.

1.6.7.2 Respiratory Protection Program

Use appropriately certified respiratory equipment to protect the health of each employee who may be exposed to air contaminants. Select appropriate respirators from among those currently approved and certified by NIOSH under the provisions of 42 CFR 84 and 29 CFR 1910, Part 134.

1.6.7.3 Eye Protection

Use helmets, handshields, faceshields, and goggles conforming to ANSI/ISEA 287.1 and ANSI/ISEA 289.1 to protect the eyes during spraying or blasting operations. Operators shall use goggles for protection from infrared and ultraviolet radiation and flying particles. Helpers and adjacent operators shall be provided with proper eye protection. The helmet, handshield, or goggles shall be equipped with a suitable filter plate to protect the eyes from excessive ultraviolet, infrared, and intense visible radiation. Supplement faceshields with safety goggles.
1.6.7.4 Hearing Protection

1.6.7.5 Protective Clothing

Appropriate protective clothing is required for spray or blast operations.

1.6.7.6 Ventilation

Provide engineering controls, including local exhaust or general ventilation systems, to control toxic fumes and gases to the extent necessary. When toxic particulates are removed from a work area, use a dust collector to trap the dust and prevent contamination of the surrounding areas and the general environment. Submit a Ventilation Assessment Plan as specified in the Submittals paragraph.

1.6.7.7 Toxic Materials

Perform metallizing only with appropriate respiratory protection and adequate ventilation. When metallizing in a confined space provide either general or local ventilation. If ventilation cannot reduce exposures to safe levels, then respirators shall be used to reduce employee exposure to acceptable levels.

1.6.7.8 Air Sampling

Perform periodic air sampling as necessary to ensure that confined spaces are maintained within the limits of the acceptable entry conditions. Submit an Airborne Sampling Plan including a listing of approved equipment, equipment calibration procedures, sampling methods, sampling to be performed, and analytical procedures to be used based on the type of work to be performed and anticipated toxic contaminants to be generated. Include the name of the accredited laboratory, listed by the American Industrial Hygiene Association (AIHA), to be used to conduct the analysis of any collected air samples.

1.6.7.9 Medical Surveillance

Employees required to work with or around solvents, blasting, flame- or arc-spray operations, and those exposed to noise above 85 dBA continuous or 140 dBA impact, or those who are required to use respiratory protective devices shall be evaluated medically. Provide a written record of the physical examination to all employees that may be required to wear a respirator, those who may be exposed to high noise, or who may be exposed to toxic contaminants. The documentation shall include a statement signed by the examining physician that the employees are medically fit to perform the assigned tasks requiring the use of hearing and respiratory protection. Medical exams shall include the following as a minimum:

a. Audiometric testing and evaluation.

b. Medical history with emphasis on the liver, kidney, and pulmonary system.

c. Testing for an unusual sensitivity to chemicals.
d. Alcohol and drug use history.

e. General physical exam with emphasis on liver, kidney, and pulmonary system.

f. Determination of the employee's physical and psychological ability to wear protective equipment, including respirators, and to perform job-related tasks.

g. Determination of baseline values of biological indices to include:
 (1) Liver function tests such as SGOT, SGPT, GCPT, alkaline phosphatase, and bilirubin.
 (2) Complete urinalysis.
 (3) EKG.
 (4) Blood urea nitrogen (BUN).
 (5) Serum creatinine.
 (6) Pulmonary function tests, FVC, and FEV.
 (7) Chest x-ray (if medically indicated).
 (8) Blood lead and ZPP (for those individuals who may be exposed to lead).
 (9) Any other criteria deemed necessary by the Contractor physician and approved by the Contracting Officer.

1.7 DELIVERY, STORAGE, AND HANDLING

1.7.1 Metallizing Wire

Package, ship, and store metallizing wire in conformance with ASTM D3951. Commercial packaging shall protect items against physical and environmental damage during shipment, handling, and storage. Protect wire spools against corrosion, deterioration, and damage during shipment. Protection shall be that used for distribution directly to a using customer or subsequent redistribution as required. Individual spool containers and shipping containers shall be clearly and durably labeled to indicate contract numbers, specification number, material type, lot number, net weight, date of manufacture (month and year), wire diameter, and manufacturer's and distributor's name. Deliver metallizing wire to the job in unbroken containers. Store all metallizing wire under cover protected from the elements.

1.7.2 Sealers and Paints

Sealers and paints shall be processed and packaged to ensure that within a period of one year from date of manufacture, they will not gel, liver, or thicken deleteriously, or form gas in the closed container. Sealers and paints, unless otherwise specified or permitted, shall be packaged in standard containers not larger than 20 L 5 gallons, with removable friction or lug-type covers. Each container or separately packaged component thereof shall be labeled to indicate the purchaser's order.
number, date of manufacture, manufacturer's batch number, quantity, color, component identification and designated name, and formula or specification number of the paint together with special labeling instructions, when specified. Deliver materials to the job in unbroken containers. Store sealers and paints, that can be harmed by exposure to cold weather, in ventilated, heated shelters. Store all sealers and paints under cover from the elements and in locations free from sparks and flames.

1.8 ENVIRONMENTAL REQUIREMENTS

**
NOTE: Minimum and maximum application temperatures should be specified for metallized coating-sealer duplexes. The established limits for sealer and paint topcoats should be specified for the entire system. Vinyl sealers and paints are generally limited to a minimum application temperature of 2 degrees C 35 degrees F. All other sealers and topcoats have a minimum application temperature of 10 degrees C 50 degrees F. If no sealer or paint is to be applied then the minimum application temperature is unlimited, however, a practical limit of 2 degrees C 35 degrees F is recommended.
**

Apply metallic coatings only to surfaces that are a minimum of 3 degrees C 5 degrees F above the dew point and that are completely free of moisture as determined by sight and touch. Do not apply metallic coatings to surfaces upon which there is detectable frost or ice. Metallized coatings shall not be applied when ambient and surface temperatures are below, or expected to drop below the minimum application temperature prior to completion of metallizing and curing of the sealer and paint. The minimum application temperature shall be [____] degrees C degrees F. During periods of inclement weather characterized by extremes of humidity and temperature, metallizing may be continued by enclosing the work area and providing conditioned air, provided the proscribed ambient, surface, and dew point temperatures are maintained.

PART 2 PRODUCTS

2.1 METALLIZING WIRE

**
NOTE: For quick guidance to the first choice metallizing system, for steel surfaces in each of several exposure conditions frequently incurred on projects, the following will be helpful:

Normal atmospheric exposures – Systems No. 1-Z and 4-Z-A.

Severe industrial atmospheric exposures – Systems No. 2-Z and 5-Z-A.

Prolonged condensation or immersion in relatively quiet, nonabrasive waters – System No. 5-Z-A.

Industrial atmosphere where longer service life is desired – Systems No. 3-Z and 6-Z-A.
**
Immersion in turbulent, ice- and debris-laden, abrasive waters - System No. 6-Z-A.

Zebra mussel control in fresh water immersion - System 6-Z-A.

Marine (salt) atmospheric exposures - System No. 7-A.

High temperature steel - System No. 8-A.

Immersion in sea water - System No. 8-A.

The following note paragraphs provide additional, useful information regarding the use of the different metallizing systems for specific applications.

For structural components that are only partially submerged, such as tainter gates, the designer should consider specifying a thicker system on the immersed surfaces and a thinner system on the atmospherically exposed surfaces. Systems using different metallizing materials should not be used for such applications. The use of multiple protective coating systems tailored to a specific structure may result in significant cost savings.

Systems No. 1-Z and 4-Z-A are considered equivalent and may be interchanged by the project specification writer. Systems No. 1-Z and 4-Z-A are intended for use on steel surfaces in normal atmospheric exposures.

Systems No. 2-Z and 5-Z-A are considered equivalent for atmospheric exposures only and may be interchanged by the project specification writer for this use. Systems No. 2-Z and 5-Z-A are intended for use on steel surfaces in normal and severe industrial atmospheres and for steel surfaces subject to prolonged periods of condensation. System 5-Z-A may also be used on steel surfaces in continuous or intermittent immersion in relatively quiet, nonabrasive fresh water.

For atmospheric exposures only, systems No. 3-Z and 6-Z-A are considered equivalent and may be interchanged by the project specification writer. Systems No. 3-Z and 6-Z-A may be used for steel surfaces exposed in normal and industrial atmospheres when a longer service life than would be provided by systems No. 2-Z or 5-Z-A is desired. System No. 6-Z-A is intended primarily for use on steel surfaces immersed in fresh waters.

System 6-Z-A is recommended for applications where a coating that prevents zebra mussel fouling is required.
System No. 7-A is recommended for use on steel surfaces in marine (salt) atmospheric exposures.

Metallizing system No. 8-A is recommended for use on high-temperature steel at temperatures up to 900 degrees C 1650 degrees F and for steel immersed in seawater. System No. 8-A may also be used for extended service on marine (salt) atmospheric steel.

**

Have the wire tested by a commercial laboratory or by the manufacturer of the wire. Acceptance of metallizing wire is based on the testing requirements described in AWS A5.01M/A5.01 Schedule H (chemical analysis). The tested wire shall conform to the compositional requirements specified in AWS C2.25/C2.25M for [99.99 Zinc] [1100 Aluminum] [85/15 Zinc-Aluminum] wire. Submit a report of the test results.

2.2 SEALER AND PAINT

**

NOTE: See paragraph SPECIAL PAINTING INSTRUCTIONS for instructions not found in Section 09 97 02.

Metallizing systems will provide excellent atmospheric corrosion protection for extended periods without sealing or painting. However, painting is recommended to extend the life of the metallic coating, and in some cases, to achieve a desired appearance. Painting systems found in Section 09 97 02 may be used to seal and paint the metallized surface. It is often convenient to paint metallized surfaces with identical paint systems employed on adjacent or contacting surfaces that have not been metallized. Paint systems No. 3, 4, and 5-D are suitable for sealing atmospherically exposed portions of partially immersed items such as tainter gates. Systems 13, 14, and a modified version of system 21 where it is topcoated with SSPC Paint 34, are recommended for items only exposed to the atmosphere. Paint systems No. 14 and SSPC Paint 34 are available in safety colors. Paint system 13 provides an aluminum finish. Other coating systems found in Section 09 97 02 are not recommended.

When used for high temperature atmospheric applications system 8-A should not be sealed.

Sealing and painting of the metallized surfaces intended for immersion is generally recommended to extend the life of the metallic coating except that aluminum coatings to be immersed in salt water should not be painted. Paint systems No. 3, 4, 5-D, and 21 are recommended for immersion applications.

When used as a zebra mussel antifoulant, system 6-Z-A should not be sealed or painted.

**

Conform all sealer and paint materials to the requirements of Section 09 97 10.00 10 Page 21
2.3 ABRASIVE MEDIA

Provide abrasive blast media as a hard angular type capable of producing the specified surface profile listed in paragraph Abrasive Blasting. The blast media shall be steel grit, silicon carbide, aluminum oxide, garnet, coal slag, or iron oxide. New steel grit shall conform to the requirements of SSPC AB 3 including paragraph 4.3.3.2 Steel Grit. Steel grit hardness shall be Rockwell C of 51 or greater. Recycled steel grit shall conform to the requirements of SSPC AB 2 and shall at no time contain greater than 15 per cent round or half-round particles when viewed under a 10X microscope or magnifying glass. Garnet abrasive shall conform to the requirements of SSPC AB 1, Type 1, Class A, and shall be an appropriate grade to produce the specified blast profile. Iron oxide abrasive shall be a commercial specular hematite material. Coal slag abrasive shall conform to the requirements of SSPC AB 1, Type 2, Class A, and shall be an appropriate grade to produce the specified blast profile. Silicon carbide and aluminum oxide abrasives shall be commercially pure materials of the appropriate gradation to produce the specified blast profile.

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Pit, Edge, and Weld Preparation

Ground visibly rough flame-cut steel and weld metal with a disk wheel grinder or other tool to produce a smooth contour prior to abrasive blasting. Grinding of flame-cut edges and welds shall also be performed to the extent necessary to etch heat-hardened metal. Ground pits with an aspect ratio of greater than unity (as deep as they are wide) with an abrasive disk or other tool prior to blasting. Pits with sharp edges, undercut pits, and pits with an irregular horizontal or vertical orientation shall also be ground smooth prior to abrasive blasting. Grinding shall smooth all of the rough and irregular surfaces to the extent necessary to allow the entire surface of the pit to be blasted and coated. Ground sharp edges prior to abrasive blasting to a uniform minimum diameter of 3 mm 1/8 inch.

3.1.2 Abrasive Blasting

**
Note: Consideration should be given to high-pressure water washing when the substrate to be metallized has previously been exposed to a chloride environment. Chloride environments are marine exposures or bridges to which de-icing salts are applied. High-pressure washing should be performed before abrasive blasting.

A profile range is specified and is dependent on the type and thickness of metallizing to be applied. Specify a 0.05 to 0.07 mm 2.0 to 3.0 mil profile for systems 1-Z, 4-Z-A, and 7-A; 0.06 to 0.09 mm 2.5 to 3.5 mils for systems 2-Z, 5-Z-A, and 8-A; and 0.07 to 0.10 mm 3.0 to 4.0 mils for systems 3-Z and 6-Z-A.
**
Ferrous surfaces to be metallized shall be solvent and blast cleaned to a white metal grade in accordance with SSPC SP 5/NACE No. 1. The compressed air used for abrasive blasting shall be clean and dry. Abrasive blast media shall be dry and free of grease and oil. The surface profile, as measured in accordance with subparagraph Blast Profile, shall be between [0.05 and 0.07] [0.06 and 0.09] [0.07 and 0.10] mm [2.0 and 3.0] [2.5 and 3.5] [3.0 and 4.0] mils. Take special care to achieve the specified blast profile on welds and flame-cut edges. In some cases it may be necessary to either grind these surfaces with a disk wheel grinder or other tool prior to blasting or to use a harder abrasive blast media. If recycled abrasives are used, the particle size distribution of the working mix shall be maintained such that a consistent blast profile is obtained. Remove weld spatter not dislodged by blasting with impact or grinding tools to bring the surface to the proper profile. Surfaces shall be dry at the time of blasting. Acceptable surfaces shall be free of all visible contaminants including grease, oil, soot, and dust prior to receiving the first coat of metallizing.

3.1.3 Protection

Program cleaning, metallizing, and painting so that dust, dry spray, or other contaminants from the cleaning and painting operations do not contaminate surfaces ready for metallization or painting. Surfaces not intended to be metallized shall be suitably protected from the effects of cleaning and metallizing operations. Protect machinery against entry of blast abrasive and dust into working parts.

3.2 METALLIZING APPLICATION

Set up and operate metallizing equipment in the same manner as used to prepare the JRS. Validate equipment set up and operation using a bend test. The bend test is acceptable if the coating shows no cracks or exhibits only minor cracking with no lifting of the coating from the substrate. If the coating cracks and lifts from the substrate, the results of the bend test are unacceptable. Provide clean and dry compressed air used to atomize the metallized coating.

3.2.1 Metallizing Application Technique

Preheat surfaces to be flame sprayed to prevent condensation of the flame on the surface to be coated. Arc spray application does not require preheating of the substrate. Surfaces to be metallized shall be free of all visible contaminants including grease, oil, soot, and dust prior to receiving the first and subsequent coats of metallizing. Apply all metallizing coats in such a manner as to produce an even, continuous film of uniform thickness. Give special attention to edges, corners, crevices, seams, joints, welds, rivets, and other surface irregularities to ensure that they receive an adequate thickness of metallic coating. Operate metallizing equipment using qualified applicators in accordance with the manufacturer's recommendations. The sprayed metal shall overlap a minimum of 40 percent on each spray pass to ensure uniform coverage. Perform manual spraying in a block pattern not exceeding 600 by 600 mm 2 by 2 feet square. Specified thickness of the coating shall be built up in multiple layers. Fewer than 2 spray coats (overlapping at right angles) will not be accepted. Hold the application gun at such a distance from the work surface that the metal remains plastic until impact with the surface. Metallizing shall not extend closer than 19 mm 3/4 inch to surfaces that are to be welded.
3.2.2 Metallizing Appearance

The thermal-sprayed coating prior to sealing shall have a uniform appearance. The coating shall not contain any of the following: blisters, cracks, chips or loosely adhering particles, oils or other internal contaminants, pits exposing the substrate, or nodules.

3.2.3 Metallizing Thickness

Coat surfaces with the systems indicated in the metallizing schedule and/or as noted on the drawings in accordance with the following:

3.2.3.1 System No. 1-Z

Apply to a minimum average thickness of 0.15 mm 6.0 mils for the completed system; the thickness at any one spot shall not be less than 0.12 mm 5.0 mils.

3.2.3.2 System No. 2-Z

Apply to a minimum average thickness of 0.3 mm 12.0 mils for the completed system; the thickness at any one spot shall not be less than 0.25 mm 10.0 mils.

3.2.3.3 System No. 3-Z

Apply to a minimum average thickness of 0.4 mm 16.0 mils for the completed system; the thickness at any one spot shall not be less than 0.32 mm 13.0 mils.

3.2.3.4 System No. 4-Z-A

Apply to a minimum average thickness of 0.15 mm 6.0 mils for the completed system; the thickness at any one spot shall not be less than 0.12 mm 5.0 mils.

3.2.3.5 System No. 5-Z-A

Apply to a minimum average thickness of 0.3 mm 12.0 mils for the completed system; the thickness at any one spot shall not be less than 0.25 mm 10.0 mils.

3.2.3.6 System No. 6-Z-A

Apply to a minimum average thickness of 0.4 mm 16.0 mils for the completed system; the thickness at any one spot shall not be less than 0.32 mm 13.0 mils.

3.2.3.7 System No. 7-A

Apply to a minimum average thickness of 0.12 mm 5.0 mils for the completed system and shall be not less than 0.10 mm 4.0 mils at any one spot.

3.2.3.8 System No. 8-A

Apply to a minimum average thickness of 0.25 mm 10.0 mils; the thickness shall be not less than 0.20 mm 8.0 mils at any one spot.
3.2.4 Metallizing Adhesion

The average adhesion of the metallized coating shall not be less than [6.9 kPa 1000 psi for 85-15 zinc-aluminum alloy] [11.0 kPa 1600 psi for aluminum] [5.2 kPa 750 psi for zinc]. No single adhesion measurement shall have a value of less than 80-percent of the specified minimum average adhesion.

3.2.5 Time Between Surface Preparation and Metallizing

Surfaces that have been prepared and approved for metallizing shall receive the first coat of metallic coating as soon as practicable after such preparation has been completed. Apply the first coat prior to the appearance of flash rust or within 4 hours of abrasive blasting, whichever is sooner.

3.2.6 Time Between Metallizing and Painting

**
NOTE: Dry time prior to immersion, if applicable, should be in accordance with the painting schedule. There is no dry time associated with thermal-spray coatings. A brief cool-down period prior to painting is necessary and may be addressed in the painting schedule by specifying a maximum temperature for surfaces to be sealed.
**

Seal approved sections of metallizing as soon as practicable after completion of metallizing. Apply the sealer prior to the appearance of condensation on the receiving surfaces or within 8 hours of completion of metallizing, whichever is sooner. In no case shall metallized coatings be allowed to become contaminated prior to application of sealers. Apply subsequent paint coats in a timely manner consistent with the painting schedule.

3.2.7 Approved Methods of Metallizing

Metallizing methods, which employ metal wire feed stock with oxygen-fuel gas flame spray or electric-arc spray that produce coatings in conformance with requirements of this specification, are acceptable.

3.3 FIELD INSPECTION

3.3.1 Quality Control Inspection and Testing

The qualified Coating Inspector shall be present during all work phases to perform and document all of the tests and inspections in paragraphs Ambient Conditions Inspection, Presurface Preparation Inspection, Surface Preparation Inspection, and Metallized Coating Inspection.

3.3.1.1 Ambient Conditions Inspection

Ambient air and surface conditions shall be monitored and documented by the Coating Inspector before and during all work phases. The conditions of humidity, dew point, and surface and ambient air temperature shall be measured and recorded. Humidity shall be determined in accordance with ASTM E337. No work shall be performed unless the conditions specified in paragraph Environmental Requirements are met.
3.3.1.2 Presurface Preparation Inspection

The Coating Inspector shall identify and mark all areas requiring preparation prior to abrasive blasting as specified in paragraph Pit, Edge, and Weld Preparation as well as areas requiring solvent-type cleaning. The entire work surface does not need to be inspected at one time, but rather the Coating Inspector may choose to mark up work areas as the job progresses. Identified areas shall be marked with an indelible marker. Pit depth shall be measured with any suitable pit depth gage. Irregular shaped pits shall be identified visually.

3.3.1.3 Surface Preparation Inspection

The Coating Inspector shall inspect all prepared surface for compliance with the specification. Blasted surfaces shall be inspected for compliance with the requirements of SSPC SP 5/NACE No. 1. Surfaces cleaned to a lesser degree than SSPC SP 5/NACE No. 1 shall be reblasted and inspected.

3.3.1.3.1 Abrasive Blast Air Cleanliness

Compressed air cleanliness shall be evaluated by the Coating Inspector on a daily basis at the beginning of the work shift in accordance with ASTM D4285. Allow the air compressor to warm up and discharge air under normal operating conditions to allow accumulated moisture to be purged. Hold an absorbent clean white cloth in the stream of compressed air not more than 600 mm 24 inch from the point of discharge for a minimum of one minute. Check the air as near as possible to the point of use and always after the position of the in-line oil and water separators. Inspect the cloth for moisture or staining. Do not use the compressed air source if there is any oil or water contamination present.

3.3.1.3.2 Recycled Blast Media Cleanliness and Shape

The Coating Inspector shall evaluate the cleanliness of recycled blast media on a daily basis at the beginning of the work shift. A clear glass container is half filled with new or recycled abrasive and distilled or deionized water is added to fill the container. The resulting slurry mixture is stirred or shaken and allowed to settle. The water is then examined for the presence of an oil sheen. If a sheen is present then the media shall not be used and the source of contamination shall be identified and corrected. Recycled steel grit blast media shall be inspected at minimum once for every four hours of blasting for compliance with paragraph Abrasive Media requirements for number of round and half-round particles. Recycled steel grit working mixtures with greater than 15 percent round or half-round particles shall be immediately disposed or reconstituted by the addition of a suitable quantity of new steel grit abrasive to the working mixture. The particle shape of the reconstituted steel grit shall be retested prior to the commencement of blasting.

3.3.1.3.3 Blast Profile

The Coating Inspector shall measure the surface profile depth in accordance with ASTM D4417, Method C. The mean value of three profile measurements taken within a 103 cm² 16 in² area constitutes a spot measurement. The minimum number of spot measurements per unit area shall be 3 per 45 m² 500 ft². The spot measurements shall be randomly spaced.
The surface profile for each 45 m² 500 ft² area shall conform to the requirements of paragraph Abrasive Blasting. Spot measurements shall be performed on weldments and flame-cut edges. At least one spot measurement shall be performed for each 15 m 50 ft of weld. At least one spot measurement shall be performed for each 3 m 10 ft of flame-cut edge. Each spot measurement on welds or flame-cut edges shall conform to the requirements of paragraph Abrasive Blasting. Areas not meeting the profile requirement shall be reblasted and inspected for blast profile.

3.3.1.3.4 Contaminants on Prepared Surface

Abrasive blasted surfaces that have been swept, blown down, or vacuum cleaned to remove residual debris and dust shall be visually inspected for grease, oil, and dust. The Coating Inspector shall use any suitable test to enhance the visual inspection for grease and oil including water break, solvent evaporation, and heat tests. The grease and oil inspection shall be performed at least once per work day or every four hours of blasting. The Coating Inspector shall inspect the cleaned surfaces for residual dust using the tape test. The tape test is performed by adhering a clear piece of tape to the surface. The removed tape is inspected for adherent particles. At a minimum the Coating Inspector shall perform the tape test once per 45 m² 500 ft² of prepared surface.

3.3.1.4 Metallized Coating Inspection

3.3.1.4.1 Equipment Setup Validation Bend Test

Each day or every time the thermal spray equipment is to be used the Coating Inspector shall record and confirm that the operating parameters are the same as were used to prepare the JRS. The thermal spray applicator shall then apply the coating to prepared test panels and conduct the bend test. The bend test is a qualitative test used to confirm that the equipment is in proper working condition. The test consists of bending coated steel panels around a cylindrical mandrel and examining the coating for cracking. The results of the bend test shall be recorded and the test panels labeled and saved. The test panels shall consist of five cold rolled steel panels measuring 75 x 150 x 1.25 mm 3 x 6 x 0.050 inch. The panels shall be cleaned, blasted, and coated using the identical surface preparation procedures and spray parameters as used to prepare the working surface. The coating shall be applied in a cross hatch pattern using the same number of overlapping spray passes as used to prepare the JRS. The coating thickness shall be measured to confirm that the coating thickness is within the specified range. Test panels shall be bent 180 degrees around a steel mandrel of a specified diameter. Thermal spray coating systems 1-Z, 2-Z, 4-Z-A, 5-Z-A, 7-A, and 8-A shall be tested using a 12.5 mm 0.5 inch diameter mandrel. Systems 3-Z and 6-Z-A shall be tested using a 15.6 mm 0.625 inch diameter mandrel. A pneumatic or manual mechanical bend test apparatus shall be used to bend the test panels. Test panels shall be examined visually without magnification. If the bend test fails, corrective action shall be taken and the bend test repeated until acceptable results are achieved. No metallizing shall be performed on the working surface prior to the successful completion of the bend test.

3.3.1.4.2 Atomization Air Cleanliness

Compressed air used for atomizing metallized coatings shall be tested using the method described in paragraph Abrasive Blast Air Cleanliness.
3.3.1.4.3 Metallized Coating Appearance

The Coating Inspector shall visually inspect the appearance of the applied metallized coating prior to sealing for compliance with the requirements of paragraph Metallized Coating Appearance. Areas of defective coating shall be reported to the Contracting Officer, documented, and marked for repair by the Coating Inspector.

3.3.1.4.4 Metallized Coating Thickness

The Coating Inspector shall evaluate the thickness of the thermal spray coating for compliance with paragraph Metallizing Thickness. Measurements shall be made using an approved and calibrated magnetic film thickness gage. Gages shall be calibrated on metal substantially the same in composition and surface preparation to that being coated and be of similar thickness or have a minimum thickness of 6 mm 1/4 inch. Calibration thickness standards (shims) shall be of a metallic composition similar to that of the material being sprayed. The calibration shim's thickness shall closely approximate the specified thickness. Calibration instructions and thickness standards shall be obtained from the manufacturer or supplier of the gage. Thickness readings shall be made either in a straight line with individual readings taken at 25 mm 1 inch intervals or spaced randomly within a 25 cm² 4 in² area. Line measurements shall be used for large flat areas and area measurements shall be used on complex surface geometries and surface transitions such as corners. The average of five readings comprises one spot measurement. A minimum of 5 randomly spaced spot measurements per 9 m² 100 ft² shall be made. For each 9 m² 100 ft² area evaluated the minimum average and minimum spot thickness requirements shall be met. Areas of deficient coating thickness shall be marked and corrected before sealing begins. The results of the thickness measurements shall be documented by the Coating Inspector.

3.3.1.4.5 Metallized Coating Adhesion

The Coating Inspector shall evaluate the adhesion of the thermal spray coating for compliance with paragraph Metallizing Adhesion in accordance with ASTM D4541 using a self-aligning type IV tester described in Annex A4 of the specification. A total of three randomly spaced adhesion tests shall be performed for each 45 m² 500 ft² of work area. Where deficiencies are noted, additional testing may be performed to help delineate the extent of area with poor adhesion. Areas of deficient adhesion shall be repaired by removing and reapplying the metallized coating. Areas damaged by adhesion testing shall also be repaired by abrasive blasting and reapplication of the metallic coating. As an alternative to testing to the failure point, the tests can be interrupted when the minimum specified adhesion value is achieved. This method precludes the need to repair coatings damaged by the test. The adherent pull stubs can then be removed by heating to soften the glue or by firmly striking the side of the stub. A strong (minimum 20.7 MPa 3000 psi) adhesive with a rapid cure (maximum 1-hour at 21 degrees C 70 degrees F) shall be used to adhere the pull stubs to the metallized coating. Methyl methacrylate adhesive Plastic Welder manufactured by Devcon is known to achieve a 27.6 MPa 4000 psi bond strength in 1-hour.

3.3.2 Quality Assurance Hold Point Evaluations

The Coating Inspector shall perform and document the Quality Assurance Hold Point evaluations and report the results to the Contracting Officer.
The Contracting Officer will have sole authority to approve progression from one work phase to the next. Work phases are delineated by the Inspection Hold Points.

3.3.2.1 Surface Preparation Quality Assurance Hold Point Evaluation

At the completion of surface preparation on a given work area and prior to metallization, the Coating Inspector shall submit to the Contracting Officer the completed documentation resulting from the inspections performed in paragraphs Ambient Conditions Inspection, Presurface Preparation Inspection, Surface Preparation Inspection, Abrasive Blast Air Cleanliness Inspection, Blast Media Cleanliness and Shape, Blast Profile, and Contaminants on Prepared Surface.

3.3.2.2 Metallized Coating Quality Assurance Hold Point Evaluation

At the completion of metallized coating application on a given work area and prior to sealing, the Coating Inspector shall submit to the Contracting Officer the completed documentation resulting from the inspections performed in paragraphs Ambient Conditions Inspection, Atomization Air Cleanliness, Metallized Coating Appearance, Metallized Coating Thickness, and Metallized Coating Adhesion.

3.3.2.3 Sealed System Quality Assurance Hold Point Evaluation

At the completion of sealer and paint coat application on a given work area and prior to the placement of the coated item in service, the Coating Inspector shall submit to the Contracting Officer the completed documentation resulting from all inspections and tests including those specified in Section 09 97 02 PAINTING: HYDRAULIC STRUCTURES.

3.4 METALLIZING SYSTEMS TO BE APPLIED

Apply the required metallizing systems as shown on the drawings.

3.5 SPECIAL PAINTING INSTRUCTIONS

**

NOTE: Thinning instructions in the painting specification should be modified as follows: the first coat of systems No. 3, 4, 5-D, and 21 shall be thinned with 25 percent by volume of the recommended thinner. Subsequent paint coats shall be thinned in accordance with the standard instructions found in Section 09 97 02. The first coat of paint systems No. 13 and 14 should not receive extra thinning. It is not required.

In geographic regions where air pollution regulations prohibit the use of impacted immersion paint systems No. 3, 4, and 5-D, for architectural painting, paint system No. 21 should be substituted for immersion applications. If system 21 does not comply with air pollution regulation then no sealer should be used. Where systems 13 and 14 do not comply with VOC regulations then do not specify a sealer system for atmospheric service.

**
Perform sealing and painting in accordance with the painting schedule and with the requirements of Section 09 97 02 PAINTING: HYDRAULIC STRUCTURES. The clean, dry metallized surface shall be the receiving surface for the specified paint systems.

3.6 METALLIZING SYSTEMS AND METALLIZING SCHEDULE

NOTE: By inserting specific item component names or surface description in the blank spaces provided in the tabulation, the metallizing to be done on a project can be shown in schedule form. Alternately, the metallizing system number can be shown on the applicable drawings.

The number assigned to each metallizing system in the listing should not be changed locally, even though on specific projects some systems are omitted. If other systems are added locally, they should be assigned numbers other than those used in this guide.

<table>
<thead>
<tr>
<th>SYSTEM NO. 1-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items or surfaces to be metallized:</td>
</tr>
<tr>
<td>Blast Profile (mm) (mils)</td>
</tr>
<tr>
<td>0.05 - 0.072.0 - 3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM NO. 2-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items or surfaces to be metallized:</td>
</tr>
<tr>
<td>Blast Profile (mm) (mils)</td>
</tr>
<tr>
<td>0.06 - 0.092.5 - 3.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM NO. 3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items or surfaces to be metallized:</td>
</tr>
<tr>
<td>Blast Profile (mm) (mils)</td>
</tr>
<tr>
<td>0.08 - 0.103.0 - 4.0</td>
</tr>
<tr>
<td>Blast Profile (mm) (mils)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>0.05 - 0.072.0 - 3.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blast Profile (mm) (mils)</th>
<th>Metallizing Material</th>
<th>Coating Minimum (mm) (mils)</th>
<th>Thickness Average (mm) (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 - 0.092.5 - 3.5</td>
<td>85-15 Zinc-Aluminum</td>
<td>0.2510</td>
<td>0.3012</td>
</tr>
<tr>
<td>0.08 - 0.103.0 - 4.0</td>
<td>85-15 Zinc-Aluminum</td>
<td>0.3514</td>
<td>0.4016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blast Profile (mm) (mils)</th>
<th>Metallizing Material</th>
<th>Coating Minimum (mm) (mils)</th>
<th>Thickness Average (mm) (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 - 0.082.0 - 3.0</td>
<td>Aluminum</td>
<td>0.104</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10 4</td>
<td>0.12 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blast Profile (mm) (mils)</th>
<th>Metallizing Material</th>
<th>Coating Minimum (mm) (mils)</th>
<th>Thickness Average (mm) (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 - 0.092.5 - 3.5</td>
<td>Aluminum</td>
<td>0.208</td>
<td>0.2510</td>
</tr>
</tbody>
</table>

-- End of Section --