SECTON TABLE OF CONTENTS

DIVISION 08 - OPENINGS

SECTION 08 39 54

BLAST RESISTANT DOORS

08/09

PART 1 GENERAL

1.1 REFERENCES
1.2 SYSTEM DESCRIPTION
 1.2.1 Design Requirements
 1.2.1.1 Static Material Strength
 1.2.1.2 Dynamic Material Strength
 1.2.1.3 Structural Member Design
 1.2.1.4 Dynamic Analysis and Deformation
 1.2.1.5 Rebound Resistance
 1.2.2 Blast Effects
 1.2.2.1 Overpressure
 1.2.2.2 Overpressure Direction
 1.2.2.3 Fragment Resistance
 1.2.3 Blast Door Operation
 1.2.4 Other Submittals Requirements
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 WARRANTY

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Concrete and Concrete Reinforcement
 2.1.2 Structural Tubing
 2.1.3 Structural Steel
 2.1.4 Steel Sheet and Strip
 2.1.5 Fasteners
2.2 HARDWARE
 2.2.1 Hinges
 2.2.1.1 General Requirements
 2.2.1.2 Hinge Description
 2.2.2 Latching System
 2.2.2.1 Latching Points
 2.2.2.2 Latching System Operation
2.2.2.3 Latching Mechanism
2.2.2.4 Safety Cover
2.2.2.5 Cover Plate
2.2.2.6 Latches
2.2.2.7 Handle
2.2.3 Mortise Lock and Latch Set
2.2.4 Keying
2.2.5 Exit Device
2.2.6 Straight Steel Bar Door Pull
2.2.7 Padlock
2.2.8 Shrouded Padlock
2.2.9 Hasp
2.2.10 High Security Hasp
2.2.11 Shrouded Hasp
2.2.12 Door Stop
2.2.13 Surface Door Closer
2.2.14 Overhead Door Holder
2.2.15 Gasket Seal
2.2.16 Door Silencer
2.2.17 Optical Device

2.3 ACCESSORIES
2.3.1 Subframe
2.3.2 Nameplate
2.3.3 Removable Threshold
2.3.4 Ramp
2.3.5 Self-Rescue Kit

2.4 FABRICATION
2.4.1 Shop Assembly
2.4.2 Mullion
2.4.3 Thermal Insulation
2.4.4 Shop Finishing
2.4.5 Clearance

2.5 BLAST DOOR ASSEMBLIES
2.5.1 Door [______]; Steel
 2.5.1.1 Type
 2.5.1.2 Overpressure
 2.5.1.3 Fragment
 2.5.1.4 Rebound
 2.5.1.5 Deformation Limits
 2.5.1.6 Hardware
 2.5.1.7 Operating Forces
 2.5.1.8 Accessories
2.5.2 Door [______]; Concrete
 2.5.2.1 Type
 2.5.2.2 Overpressure
 2.5.2.3 Fragment
 2.5.2.4 Rebound
 2.5.2.5 Deformation Limits
 2.5.2.6 Hardware
 2.5.2.7 Operating Forces
 2.5.2.8 Accessories
2.5.3 Door [______]; Metal
 2.5.3.1 Type
 2.5.3.2 Overpressure
 2.5.3.3 Rebound
 2.5.3.4 Hardware
 2.5.3.5 Operating Forces
 2.5.3.6 Accessories

2.6 TESTS, INSPECTIONS, AND VERIFICATIONS
2.6.1 Prototype Static Test
2.6.2 Prototype Blast Test
2.6.3 Shop Operating Test
2.6.4 Air Leakage Test
2.6.5 Sound Rating Test
2.6.6 Fire Rating Test and Inspection

PART 3 EXECUTION

3.1 INSTALLATION
3.2 TESTS
3.3 MANUFACTURER'S FIELD SERVICE

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for manually operated swinging structural steel, reinforced concrete, and hollow metal blast resistant doors.

Adhere to **UFC 1-300-02** Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a **Criteria Change Request (CCR)**.

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature.
to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA)

ABMA 9 (2015) Load Ratings and Fatigue Life for Ball Bearings
ABMA 11 (2014) Load Ratings and Fatigue Life for Roller Bearings

AMERICAN CONCRETE INSTITUTE (ACI)

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016; Errata 7-9 2017) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)
ACI 318M (2014; ERTA 2015) Building Code Requirements for Structural Concrete & Commentary

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AISC 360 (2016) Specification for Structural Steel Buildings

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI S100 (2012) North American Specification for the Design of Cold-Formed Steel Structural Members

AMERICAN WELDING SOCIETY (AWS)

AWS A5.4/A5.4M (2012) Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding
AWS D1.1/D1.1M (2020) Structural Welding Code - Steel
AWS D1.4/D1.4M (2011) Structural Welding Code - Reinforcing Steel

ASTM A490M (2014a) Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)

ASTM A500/A500M (2020) Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

Alloy Steel Plate, Suitable for Welding

ASTM A574 (2017) Standard Specification for Alloy Steel Socket-Head Cap Screws

ASTM A615/A615M (2020) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM A653/A653M (2020) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A706/A706M (2016) Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

ASTM F436 (2011) Hardened Steel Washers

ASTM F436M (2011) Hardened Steel Washers (Metric)

ASTM F835 (2020) Standard Specification for Alloy Steel Socket Button and Flat Countersunk Head Cap Screws

ASTM F883 (2013) Padlocks

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.3 (2014) Exit Devices

ANSI/BHMA A156.4 (2013) Door Controls – Closers

ANSI/BHMA A156.8 (2015) Door Controls – Overhead Stops and Holders

ANSI/BHMA A156.13 (2017) Mortise Locks & Latches Series 1000

ANSI/BHMA A156.20 (2017) Strap and Tee Hinges, and Hasps

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 80A (2017) Recommended Practice for Protection of Buildings from Exterior Fire Exposures

1.2 SYSTEM DESCRIPTION

**

NOTE: Unlike most other doors, a blast door is provided by one manufacturer as a complete assembly including the door, frame, hardware, and accessories. This must be done because items such as the door, frame, latches, and hinges are of special manufacture and are interdependent parts of blast resistance. To facilitate the specification of individual door assemblies, the door type, blast effects, rebound, deformation limits, operating forces, hardware, and accessories for each door are brought together under a blast door assembly specification in Part 2 where assembly specification paragraphs for the various door types are provided.

The designer will become familiar with these assembly paragraphs prior to specification editing. Coordinate with paragraph BLAST DOOR ASSEMBLIES.

**

Provide a blast resistant door which fits a Door Description as follows:
[Structural steel doors shall be [flush mounted in frames] [or] [surface mounted] [as indicated].] [Reinforced concrete doors shall be surface mounted.] [Hollow metal doors shall be flush mounted in frames.] Doors shall be the manually operated, side hinged, swinging type. Each door assembly shall include the door, frame, anchors, hardware, and accessories and shall be provided by a single manufacturer. Frames and anchors shall be capable of transferring blast and rebound reactions to the adjacent supporting structure. Resistance to blast shall be demonstrated either by design calculations or tests on prototype door assemblies.

1.2.1 Design Requirements

1.2.1.1 Static Material Strength

Obtain the static values for minimum yield strength (or yield point) and (ultimate) tensile strength for steel from the applicable material specification. For tensile strength specified in terms of a tensile strength range, the lowest tensile strength specified shall be selected for design. Structural steel having a minimum static yield strength (or yield point) less than 345 MPa 50 ksi [and Grade 60 reinforcing bars] shall be designed using an average yield strength computed as 1.1 times the minimum static yield strength or yield point. If the minimum static yield for structural steel exceeds 345 MPa 50 ksi, the expected yield strength used for design shall be equal to the minimum specified static yield strength or yield point without increase. [The in-place compressive strength of concrete used for design shall be computed by multiplying the specified compressive strength by 1.1 to reach the expected compressed strength and then multiplying by not more than 1.15 to account for a one year age effect.] [The expected yield stress for steel sheet and strip used in design shall be computed as 1.21 times the specified static yield point.]
1.2.1.2 Dynamic Material Strength

Compute the dynamic material strength by applying a dynamic increase factor that accounts for the increase in material strength due to strain rate effects. The dynamic increase factor for structural steel in flexure shall be applied to the average yield strength and shall be [1.29] [____], [1.19] [____], and [1.09] [____] for structural steel having a minimum yield strength (or yield point) of 248 MPa, 345 MPa, and 689 MPa 36, 50, and 100 ksi, respectively. The dynamic increase factor for structural steel having a minimum yield strength (or yield point) between these values shall be obtained by interpolation. Optionally, for structural steel in these yield ranges, the dynamic increase factor shall be determined by a detailed analysis that accounts for the time to yield. The dynamic increase factor for structural steel having a minimum yield exceeding 689 MPa 100 ksi shall be 1.0. [The dynamic increase factor for Grade 60 flexural reinforcing bars shall be [1.17] [____] applied to the average yield strength. The dynamic increase factor for concrete used in flexure shall be [1.19] [____] applied to the in-place compressive strength. Optionally, the dynamic increase factor applied to flexural reinforcing bar yield and concrete compressive strength shall be determined by a detailed analysis that accounts for the time to steel yield and time to ultimate concrete strength.] [The dynamic increase factor for steel sheet and strip used in flexure shall be 1.1 applied to the average yield stress.]

1.2.1.3 Structural Member Design

[Obtain structural steel section properties for rolled shapes from AISC 325, AISC 325, or steel manufacturers' catalogs. The plastic moment capacity for single plate sections and sections built up from plates and shapes shall be computed as the average of the elastic and plastic section modulus multiplied by the dynamic yield strength, unless otherwise approved. Shear, welds, local buckling, and web crippling of structural steel shall be designed in accordance with AISC 325, the plastic design provisions of AISC 360, or by other approved methods except that for blast design, the load factors and resistance factors shall be equal to 1.0 and the dynamic yield strength shall be substituted for the static yield stress.] [Nominal reinforcing bar designations, weights, and dimensions shall be obtained from ACI 318M ACI 318 or the reinforcing bar specification. The moment of inertia of the reinforced concrete cross section used to determine the elastic deflection shall be the average of the moment of inertia of the gross section and the moment of inertia of the cracked section. The resistance of the reinforced concrete section shall be computed in accordance with ACI 318M ACI 318 or other approved methods except that for blast design, the load and resistance factors shall be equal to 1.0 and the dynamic reinforcing bar yield strength and dynamic ultimate concrete strength shall be substituted for the static strength values.] [Hollow metal doors shall be designed in accordance with AISI S100 except that for blast design, the dynamic yield strength shall be substituted for the static yield point.]

1.2.1.4 Dynamic Analysis and Deformation

Design the door using an equivalent single degree of freedom or other approved dynamic analysis method. The maximum door deformation shall be selected by the door manufacturer except that the maximum deformation in flexure shall not exceed the deformation limits specified or indicated. The deformation of structural steel members having a minimum yield
strength or yield point greater than 448 MPa 65 ksi shall not exceed the elastic deflection. [Increased resistance due to strain hardening of structural steel in flexure can be used when the ductility ratio exceeds 10 or when otherwise approved.] [The ductility ratio for flexural members in hollow metal doors shall not exceed 1.0.]

1.2.1.5 Rebound Resistance

**
NOTE: For structural steel and hollow metal doors, specify 100 percent rebound resistance in the extreme case when the blast overpressure duration is much shorter than the expected period of the door and when rebound resistance must be guaranteed. Specify less than 50 percent rebound resistance in the extreme case when the blast overpressure duration is much longer than the expected period of the door. Specify zero rebound in the extreme case in which the door need not remain in place after the blast. Otherwise, specify 50 percent rebound resistance as recommended in UFC 3-340-01. The most prevalent rebound resistance for reinforced concrete doors is 20 and 100 percent.

Rebound for each door will be specified in paragraph BLAST DOOR ASSEMBLIES.
**

Rebound resistance shall be the specified or indicated percentage of the door resistance at initial peak response.

1.2.2 Blast Effects

**
NOTE: Specifying doors in terms of overpressure without duration is recommended only when the overpressure is low and the overpressure duration is greater than about 10 times the expected period of the door. Overpressure without duration is often specified for hollow metal doors because they have low overpressure resistance. Hollow metal doors are available to resist overpressures in the range from 6 to 173 kPa 1 to 25 psi, but a structural steel door option should be considered when the overpressure exceeds 83 kPa 12 psi.

Specifying time dependent overpressure is required for other than low and long duration overpressures and is recommended for reinforced concrete doors. When the waveform is other than a zero rise time triangle, show the waveform on the drawings.
**

1.2.2.1 Overpressure

The spatial distribution of overpressure shall be uniform unless otherwise specified or indicated. [For overpressure specified or indicated without duration, the overpressure waveform shall have a zero rise time and infinite duration.] [For overpressure specified or indicated with
duration only, the waveform shall be a triangle with a zero rise time.] [Special waveforms are indicated.]

1.2.2.2 Overpressure Direction

[For overpressure identified as seating and for overpressure directions not otherwise specified or indicated, the positive phase overpressure shall be in the direction that causes the door to seat toward the frame.]
[For overpressure identified as unseating, the positive phase overpressure shall be in the direction that causes the door to unseat away from the frame.]

1.2.2.3 Fragment Resistance

**

NOTE: Fragment design parameters will be determined in accordance with UFC 3-340-01, as applicable. Exposing blast doors to primary fragments is not recommended because of the resulting severe damage to hardware, because molten fragments can weld the door to the frame preventing post-blast opening, and because it is difficult to prevent perforation at the door edges. Also, while latches and latch mechanisms can be protected, it is usually not practical to protect the hinges.

Worst-case fragment perforation of the door can be prevented for structural steel and reinforced concrete doors by specifying fragment characteristics or a minimum plate or concrete thickness in the door assembly paragraph.

The 100 and 200 mm 4 and 8 inch reinforced concrete nominal thickness shown are typically available.

Hollow metal doors cannot prevent perforation by primary fragments and will not be used for this purpose.

Fragment parameters or door thickness will be specified in paragraph BLAST DOOR ASSEMBLIES.

**

For doors specified or indicated to resist fragments, design the door and the door and frame interface to prevent fragment perforation and the latches and latching mechanism shall be shielded from fragment damage. The fragment impact point shall be anywhere on the door and frame face exposed to overpressure.

1.2.3 Blast Door Operation

**

NOTE: Specify swing forces of 90 and 70 N 20 and 15 pounds for hollow metal doors, 135 and 90 N 30 and 20 pounds for structural steel doors, and 180 and 90 N 40 and 20 pounds for 200 mm 8 inch thick reinforced concrete doors and heavy structural steel doors. Use the lower values for structural and hollow metal doors when rolling bearing hinges are
specified.

For latch engagement and release, specify 90 to 135 N (20 to 30 pounds) for structural steel doors without gasket seals and for reinforced concrete doors. Specify 135 to 180 N (30 to 40 pounds) for structural steel doors with gasket seals is recommended to accommodate the extra force required to compress the gasket during latching.

For means of egress, specify NFPA 101 operating forces. In this case, Type I (rolling bearing) hinges are recommended.

Operating requirements will be specified in paragraph BLAST DOOR ASSEMBLIES.

**

Measure the force required to set the door in motion from the 90-degree open position, and measure the force required to engage and release the latches at the latch handle with the door in the normal closed position.

1.2.4 Other Submittals Requirements

The following shall be submitted:

a. Detailed fabrication and assembly drawings for special doors or standard doors with appreciable modifications, indicating the door location and showing dimensions, materials, fabrication methods, hardware, and accessories in sufficient detail to enable the Contracting Officer to check compliance with contract documents. These drawings need not be submitted for standard doors for which manufacturer's catalog data is submitted. Weld symbols used shall conform to AWS A2.4.

b. Data on standard blast doors consisting of catalog cuts, brochures, circulars, specifications, and product data that show complete dimensions and completely describe overpressure ratings, rebound ratings, doors, frames, anchors, hardware, and accessories. Manufacturer's instructions for installation and field testing.

c. Detailed structural analysis and design calculations demonstrating resistance to blast when blast resistance is not demonstrated by prototype tests. Design calculations shall demonstrate adequacy under the blast effects specified or indicated. Include in the design calculations a sketch of the overpressure waveform; dimensioned sketches of blast resisting elements such as door members, frame members, latches, and hinges; section properties for blast resisting members including built-up sections; the standard under which steel is produced; static and dynamic material strength properties; the resistance, stiffness, mass, elastic natural period, and elastic deflection for flexural members; and the peak deflection, peak support rotation, and time to peak deflection for door members in flexure. Design calculations shall cover initial response, rebound, and all secondary items such as shear, welds, local buckling, web crippling, hinges, and latches.

d. Steel mill reports covering the number, chemical composition, and tension properties for structural quality steels. When blast
resistance is demonstrated by calculations, a certificate stating that the door assembly provided was manufactured using the same materials, dimensions, and tolerances shown in the calculations. When blast resistance is demonstrated by prototype testing, a certificate stating that door and frame provided was manufactured using the same materials, dimensions, and tolerances as the tested prototype and listing the hardware and frame anchors required to achieve blast resistance. Each certificate shall be signed by an official authorized to certify in behalf of the manufacturer and shall identify the door assembly and date of shipment or delivery to which the certificate applies.

e. Information, for DOOR DESCRIPTION, bound in manual form consisting of manufacturer's safety precautions, preventative maintenance and schedules, troubleshooting procedures, special tools, parts list, and spare parts data. All material shall be cross referenced to the door designations shown on the drawings.

1.3 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office, and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for
Contractor Quality Control approval.[for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation; G[, [_____]]

SD-03 Product Data
 Door Description; G[, [_____]]
 Design Requirements; G[, [_____]]
 Manufacturer's Field Service

SD-06 Test Reports
 Tests
 Tests, Inspections, and Verifications
 Fire Rating Test and Inspection
 Prototype Static Test; G[, [_____]]
 Prototype Blast Test; G[, [_____]]

SD-07 Certificates
 Materials
 Fire-Rated Door Assemblies
 Thermal Insulation
 Sound Rating Test

SD-10 Operation and Maintenance Data
 Door Description; G[, [_____]]

1.4 QUALITY ASSURANCE

**
NOTE: Delete AWS D1.3/D1.3M requirement when hollow metal doors are not specified. Delete AWS D1.4/D1.4M requirement when reinforced concrete doors are not specified.
**

Welders, welding operators, and weld inspectors shall be qualified in accordance with AWS D1.1/D1.1M [except that] [welders performing arc welding of steel sheet and strip shall be qualified in accordance with AWS D1.3/D1.3M] [and] [welders and weld operators performing welding of reinforcing bars shall be qualified in accordance with AWS D1.4/D1.4M].

1.5 DELIVERY, STORAGE, AND HANDLING

Store door assemblies, delivered and placed in storage, with protection from weather and dirt, dust, and contaminants.

1.6 WARRANTY

Furnish manufacturer's written warranty covering the blast door assembly for 2 years after acceptance by the Government. Warranty shall provide for repair and replacement of the blast door assembly and individual
hardware and accessory items in the event of malfunction due to defects in design, materials, and workmanship except that the warranty need not cover finishes provided by others.

PART 2 PRODUCTS

2.1 MATERIALS

Only structural quality steel materials, for which tension properties have been obtained, shall be used to resist blast except that commercial quality steel sheet and strip shall be permitted for prototype tested hollow metal doors. Select steel used in the door, door frame, and door frame anchors, and non stainless steel fasteners that resist blast, from the materials specified.

2.1.1 Concrete and Concrete Reinforcement

**
NOTE: Retain this paragraph when reinforced concrete doors are specified.
**

Concrete is specified in Section 03 30 00 CAST-IN-PLACE CONCRETE. Concrete reinforcement shall conform to ASTM A615/A615M or ASTM A706/A706M, Grade 60.

2.1.2 Structural Tubing

**
NOTE: Retain this paragraph when structural steel or hollow metal doors are specified.
**

Structural tubing shall conform to ASTM A500/A500M, ASTM A501/A501M, or ASTM A618/A618M.

2.1.3 Structural Steel

**
NOTE: For reinforced concrete and hollow metal doors, specify only ASTM A36/A36M.
**

Structural steel bars, plates, and shapes shall conform to ASTM A36/A36M, ASTM A242/A242M, ASTM A529/A529M, ASTM A572/A572M, or ASTM A588/A588M. Quenched and tempered steel plate shall conform to ASTM A514/A514M.

2.1.4 Steel Sheet and Strip

**
NOTE: Retain this paragraph when hollow metal doors are specified.
**

Steel sheet and strip shall conform to ASTM A653/A653M, Type A, B, and C; ASTM A653/A653M; ASTM A606/A606M; or ASTM A792/A792M, Grades 33, 37, 40, and 50.
2.1.5 Fasteners

2.2 HARDWARE

2.2.1 Hinges

**

NOTE: Retain rolling bearing and operating cycle description under General Requirements when hinge Type 1 is specified.

Blast door hinges are normally full surface. Mortise hinges can be specified for hollow metal doors, but availability must be verified with door manufacturers.

Hinge Type 1 is intended for cases where high usage with smooth operation is the main requirement and is generally appropriate for facilities designed to resist the effects of improvised explosive devices.

Hinge Type 2 is intended for cases where in-structure shock could damage rolling thrust bearings and is recommended for facilities designed to resist the effects of conventional weapons.

Hinge Type 3 is recommended for low use applications such as infrequently used access doors.

**

2.2.1.1 General Requirements

Hinges shall be specially manufactured to support the door and to resist blast induced loading. The number of hinges shall be determined by the blast door manufacturer. Welds used in hinges shall be continuous. Attach hinges to the door and frame using mechanical fasteners, except that full surface hinges for doors with locks shall be attached to the door and frame by welding or approved tamper-resistant mechanical fasteners and hinges for doors with locks shall have approved nonremovable pins. Load ratings and fatigue life for ball and roller bearings shall be determined in accordance with ABMA 9 and ABMA 11 as applicable and, unless otherwise approved, the bearing steel shall conform to ASTM A534. Hinges shall be capable of operating for the minimum number of cycles specified without failure or excessive wear under the door service loads where one cycle consists of swinging the door back and forth between the normal closed position and the 90-degree open position, where failure or excessive wear means that the latches do not seat properly or the door does not swing smoothly due to hinge failure or wear, and where door service loads consist of the door weight plus any loads produced by hardware. Rolling bearings shall be factory grease lubricated and either sealed or provided with easily accessible lubrication fittings.
2.2.1.2 Hinge Description

[Hinge Type 1 shall be capable of smooth operation for a minimum of 250,000 cycles. This type of hinge shall be provided with structural quality steel pins and leafs and either rolling bearings in both the thrust and radial directions or hardened steel washer (disc) thrust bearings and rolling radial bearings except that rolling thrust bearings and metallic journal radial bearings shall be permitted for hollow metal doors when the specified overpressure is less than 21 kPa 3 psi]. [Hinge Type 2 shall be smooth operating and shall be provided with structural quality steel pins and leafs, steel base washer (disc) thrust bearings, and metallic journal radial bearings or other approved non rolling type bearings.] [Hinge Type 3 shall be provided with metallic bearings.]

2.2.2 Latching System

2.2.2.1 Latching Points

The number of latching points shall be determined by the door manufacturer. [For multiple latching points, latching points can be provided at the head, sill, and jambs.] [For jamb latching points, latching points shall be provided at the jambs only.]

2.2.2.2 Latching System Operation

**
NOTE: Retain the first sentence when hinge Type 1 is specified.
**

Latching systems shall be capable of operating for the same number of cycles specified for the door hinges where one latch operating cycle consists of engaging and releasing using the handle. Latches shall remain engaged until manually released and shall not release under blast loads or rebound. [Manually operated latches shall remain in the released position until manually engaged.] [Self-latching latches shall provide self-activating engagement when the door is swung to the normal closed position.] Handles shall release latches under a clockwise motion.

2.2.2.3 Latching Mechanism

[Latching mechanisms and latches for structural steel doors shall be mounted on the seating face of the door.] [Latching mechanisms for hollow metal doors shall be mounted on the seating face of the door and safety covered.] [Unless otherwise approved, latch handle axles (spindles) for structural steel doors] [and] [reinforced concrete doors] shall extend through the blast load carrying portion of the door and shall be provided with suitable metallic journal bearings.] Latch handle axles shall be manufactured of hardened steel or stainless steel, and axles requiring lubrication shall be provided with easily accessible lubrication fittings.

2.2.2.4 Safety Cover

**
NOTE: Safety covers apply to structural steel and hollow metal doors.
**
Safety covers shall consist of steel housings that enclose the latching mechanism such that only the operating rods are exposed.

2.2.2.5 Cover Plate

Cover plates for structural steel doors shall be manufactured of minimum 6 mm 1/4 inch thick plate and shall enclose the entire latching mechanism.

2.2.2.6 Latches

**
NOTE: Retain lever type latches for reinforced concrete doors.
**

Latches (latch bolts) shall be manufactured of structural quality steel and the latch bolt throw shall not be less than 19 mm 3/4 inch. Latch bolts shall be the sliding type in which the latch bolt slides into a matching strike in the door frame [or the lever type in which the latch bolt rotates into a groove in the frame as specified or indicated] [except that latches for doors with [mortise lock and latch sets] [and] [exit devices] shall be the sliding type]. Manually operated latches shall draw the door toward the frame during latching.

2.2.2.7 Handle

**
NOTE: Wheel or spoke handle options are recommended for structural steel doors when gasket seals are specified.
**

[Handles for doors without locks shall be manufactured of steel castings, forgings, pipe, round tubing, bar, or plate and shall be one piece or have welded joints except that wheel handles can be manufactured of aluminum castings.] [Handles for doors with mortise lock and latch sets shall be manufactured of [steel castings] [or] [stainless steel].] Latch handles shall be firmly fastened to axles. Lever handles shall be perpendicular to the door edge when latches are engaged. [Single lever handles shall be located at the stile opposite the hinges.] [[Wheel] [and spoke lever] [Spoke lever] handles shall be located approximately halfway between the stiles.]

2.2.3 Mortise Lock and Latch Set

**
NOTE: Mortise lock and latch sets are practical only for hollow metal doors. These lock and latch sets are special built and are not normally cycle tested as specified in ANSI/BHMA A156.13. Mortise lock and latch sets are usually specified only when a deadbolt function is required.
**

Lever handles shall release latches using a torque not exceeding 3 N-meters 27 lb-inch. Latches (latch bolts) shall be located at the stiles and operated from a single lever handle. Only one deadbolt shall be provided. The deadbolt shall be manufactured of structural quality steel and the deadbolt throw shall not be less than 25 mm 1 inch. Mortise locks
shall be provided with armored fronts. The function numbers for mortise locks shall be as defined in ANSI/BHMA A156.13.

2.2.4 Keying

[Keying shall conform to Section 08 71 00 DOOR HARDWARE.] [Change keys for locks shall be stamped with change number and the inscription "U.S. Property - Do Not Duplicate." Unless otherwise specified, two change keys shall be provided for each lock.] [Locks shall be furnished with the manufacturer's standard construction key system.]

2.2.5 Exit Device

**
NOTE: Exit devices are practical only for hollow metal doors and light structural steel doors.
**

Latches (latch bolts) shall release by depressing the actuation bar using a force of not more than 67 N 15 lbf applied perpendicular to the door in the swing direction. The exit device shall [conform to the finish test values specified in ANSI/BHMA A156.3 and shall] be of [stainless steel construction] [and] plain design with straight, beveled, or smoothly rounded sides, corners, and edges. A touch bar may be provided in lieu of a conventional actuation bar (cross bar). The function numbers for exit devices shall be as defined in ANSI/BHMA A156.3.

2.2.6 Straight Steel Bar Door Pull

**
NOTE: This door pull is intended for structural steel and reinforced concrete doors. Type III normally applies.
**

Straight steel bar door pulls shall be manufactured of round steel bar. The type furnished shall be [Type I: 13 mm 1/2 inch diameter, 125 mm 5 inch grip and 65 mm 2-1/2 inch projection with 13 mm 1/2 inch inside bend radiuses] [; and] [Type II: 16 mm 5/8 inch diameter, 300 mm 12 inch grip and 100 mm 4 inch projection with 24 mm 15/16 inch inside bend radiuses] [; and] [Type III: 16 mm 5/8 inch diameter, 200 mm 8 inch grip and 100 mm 4 inch projection with 24 mm 15/16 inch inside bend radiuses]. Grip and projection dimensions are measured from the bar centerline. The pull shall be attached to the door by fillet welding all around.

2.2.7 Padlock

**
NOTE: For ASTM F883 padlock, specify Type P01 (key operated) or P02 (combination operated) and Grade 1 (lowest) to 6 (highest) performance. Available ASTM F883 options are "A" (key is captive in cylinder when padlock is unlocked), "B" (removable cylinder), "C" (changeable combination), "D" (combination operated with key control), "E" (corrosion resistant), and "F" (provided with nonferrous shackles).
**
Low security padlocks shall conform to ASTM F883, Type [PO1][PO2], Option [_____] [and] [_____], Grade [____].

2.2.8 Shrouded Padlock

**
NOTE: Use a shrouded padlock in conjunction with a high security shrouded hasp.
**

High security padlocks with shrouded shackles shall conform to DLA Lock, 5340-01-217-5068.

2.2.9 Hasp

Low security hasps shall conform to ANSI/BHMA A156.20, Grade [1] [2] [3], steel, [safety] [or] [open hinge] type with [adjustable] [,] [or] [swivel] [,] [or] [fixed] staple, [paint finished] [or] [galvanized] [as specified] and screw fastened to the door and frame.

2.2.10 High Security Hasp

**
NOTE: This high security hasp is a non-shrouded mortise type. Styles 1 through 9 are available. Consult referenced military specification.
**

High security hasps shall conform to ASTM F2155, Style [____] [carbon] [corrosion resistant] steel, attached by [fasteners] [welding].

2.2.11 Shrouded Hasp

**
NOTE: Style 1 applies to right-hand doors and Style 2 to left-hand doors.
**

High security shrouded hasps shall conform to ASTM F2155.

2.2.12 Door Stop

Door stops shall be designed to resist the impact of the door. The stop shall not scratch or scar the door finish when the door is opened against the stop.

2.2.13 Surface Door Closer

**
NOTE: Door closers are practical only for hollow metal doors and light structural steel doors.
**

The surface door closer shall conform to ANSI/BHMA A156.4. The size and grade shall be selected by the door manufacturer.

2.2.14 Overhead Door Holder

Overhead door holder shall be surface mounted. The holder shall have a
Spring or other device to cushion the door action and shall limit the door swing at [85] [110] degrees. [The holder shall have a built-in, hold-open capability at the swing limit specified.] [Overhead door holders for hollow metal doors weighing less than 90 kg 200 pounds shall conform to ANSI/BHMA A156.8.]

2.2.15 Gasket Seal

**
NOTE: Gasket seals are recommended for reinforced concrete doors.

Gasket seals installed in manually operated doors are not recommended for reliable prevention of blast leakage. Seals are typically used for reinforced concrete doors to improve the weather seal and provide a door silencer.
**

Sealed doors shall have the full door perimeter and all door penetrations sealed. Perimeter seals shall be the rubber gasket type. Gaskets shall be removable, capable of sealing the mating surfaces, and resistant to the atmospheric environment. One spare set of gasket seals shall be provided for each door assembly for which gasket seals are specified.

2.2.16 Door Silencer

**
NOTE: When gasket door seals are specified, the gasket seal will act as the silencer.
**

Rubber door silencers shall cushion the impact of the door against the frame so that steel-to-steel contact is not made during closing.

2.2.17 Optical Device

The optical device (spy hole) shall be wide angle and shall not be breeched or dislodged by the specified or indicated blast overpressure. The device shall permit observation from the seating face of the door and shall be located approximately 1.5 m 5 feet above the seating side floor and approximately centered between the stiles.

2.3 ACCESSORIES

2.3.1 Subframe

At the Contractor's option, a subframe can be provided and built into the structure prior to installation of the frame. The subframe and subframe anchors shall be capable of transferring blast and rebound reactions to the adjacent structure, and the frame shall be capable of transferring these reactions to the subframe. The subframe shall be fabricated in the same manner specified for the frame.

2.3.2 Nameplate

Each door assembly shall have a permanently affixed nameplate that displays the manufacturer's name, place and year of manufacture, and the applicable peak overpressure, impulse, and rebound rating.
2.3.3 Removable Threshold

The sill shall be flush with the adjacent floor when the threshold is removed. The removable threshold shall be attached using approved countersunk mechanical fasteners.

2.3.4 Ramp

The ramp shall be structural steel, portable, and weigh not more than [90] [_____] kg [200] [_____] pounds. The ramp shall be of sufficient length to extend the full door opening width and shall have the profile indicated. The ramp shall be capable of supporting [a wheel load of [_____] N lbf] [the wheel load indicated].

2.3.5 Self-Rescue Kit

**
NOTE: Self-rescue kits are usually specified only when post-blast operation is desired and debris could prevent the door from opening.
**

Self-rescue kits shall contain illustrated instructions, nonadjustable wrenches, screwdrivers, jacks, and all other tools required to open the blast door from the seating face to a width of at least 300 mm 12 inches. The jack capacity shall not be less than [334] [_____] kN [75,000] [_____] lbf. Tools shall be securely mounted in a steel frame using wing nuts or other approved fasteners. The self-rescue kit frame shall be fabricated in the same manner specified for the door frame and shall be securely anchored to the wall at the location indicated or as directed.

2.4 FABRICATION

2.4.1 Shop Assembly

**
NOTE: Delete welding of stainless steel when only reinforced concrete doors are specified.
**

For reinforced concrete doors, spall plates will be specified for all cases except in extreme cases where it is certain that spall damage is nonexistent or when faceplates are used.

Specify faceplates for exterior doors in conventional weapons resistant facilities in cases where construction is to parallel NATO criteria.

Composite faceplated reinforced concrete doors with studs welded to both faceplates are also available. When these doors are required, specify the following in the fabrication paragraph: "Composite faceplated reinforced concrete doors shall be provided with studs shop welded to faceplates at both ends of the stud. Studs shall be of sufficient diameter and spacing to effectively transfer shear forces."

Specify the following under door assembly paragraph Door Type: "Composite faceplated reinforced concrete
2.4.2 Mullion

Mullions for double doors shall be fabricated in the same manner specified for frames. [Fixed mullions shall be welded to the frame.] [Removable mullions shall be attached to the frame with mechanical fasteners that are accessible for mullion removal or, in lieu of the removable mullion, an astragal shall be provided at the seating face of the inactive door leaf.] Doors shall seat directly against the mullion, and the mullion or astragal shall be capable of transferring the door reactions to the frame.

2.4.3 Thermal Insulation

The interior cells between the unitized grid shall be completely filled with thermal insulation material. The U value through the door (panel) shall not exceed [1.36] [_____] W per square meter per degree K [0.24] [_____] Btu per square foot per hour per degree F. Submit certification or test report for [thermal insulated] [sound rated] doors listing the type of hardware used to achieve the rating; see paragraph SOUND RATING TEST below.
2.4.4 Shop Finishing

[Shop priming of steel surfaces shall conform to Section 09 90 00 PAINTS AND COATINGS, except that surfaces that will be embedded in concrete need not be primed and hollow metal doors shall be either dipped in primer after welding is completed, or exposed surfaces shall be primed and interior surfaces coated with an approved rust inhibitor]. [Galvanizing of doors and frames shall conform to ASTM A123/A123M or other approved methods. Surfaces that will be embedded in concrete need not be galvanized and the interior of hollow metal doors may be treated with an approved rust inhibitor in lieu of galvanizing. Galvanizing of exposed portions of concrete anchors, non stainless steel fasteners, and hardware other than factory finished hardware shall conform to ASTM A153/A153M or other approved methods.]

2.4.5 Clearance

[The clearance between the seated steel surfaces of structural steel doors and frames shall not exceed 1.6 mm 1/16 inch.] [The lateral clearance between flush mounted structural steel doors and frames shall not exceed [6] [_____] mm [1/4] [_____] inch at the head and jambs and the clearance between the meeting edges of pairs of doors shall not exceed [13] [_____] mm [1/2] [_____] inch.] [The lateral clearance between hollow metal doors and frames shall not exceed 3 mm 1/8 inch at the head and jambs and the clearance between the meeting edges of pairs of doors shall not exceed 6 mm 1/4 inch.] The clearance between the door bottom and threshold shall not exceed 19 mm 3/4 inch.

2.5 BLAST DOOR ASSEMBLIES

**
NOTE: The assembly paragraphs provided for structural steel, reinforced concrete, and hollow metal doors will be repeated and edited as many times as required to specify all door assemblies. The door designs will then be referenced in the door schedule on the drawings. Items shown on the drawings will not be duplicated in the door assembly paragraphs. The door assembly paragraphs are pre-edited to show normal use and hardware availability; e.g., thermal insulation, sound rating, and mortise locks are omitted for structural steel and reinforced concrete doors, Type 2 hinges are normally used for reinforced concrete doors and thus are shown without brackets, etc.
**

2.5.1 Door [____]; Steel

**
NOTE: Coordinate with paragraphs DESCRIPTION and BLAST DOOR ASSEMBLIES.
**

2.5.1.1 Type

Type shall be [structural steel] [double structural steel door with [fixed] [or] [removable] mullion] [,] [galvanized] [,] [and] [fire-rated].
2.5.1.2 Overpressure

Overpressure shall be [_____] kPa psi [with a [_____] millisecond duration] in the [seating] [unseating] direction [and [_____] kPa psi [with a [_____] millisecond duration] in the unseating direction]. The [shock and gas overpressure] [overpressure] waveform shall be as indicated.

2.5.1.3 Fragment

**

NOTE: Coordinate with paragraph Fragment Resistance, under paragraph DESCRIPTION.
**

[The fragment shall be [_____] g ounces with a velocity of [_____] m/s fps and impact [normal to] [at an angle of [_____] degrees measured from] the door face.] [Protection from fragments shall be provided by steel plate not less than [_____] mm inches in thickness.]

2.5.1.4 Rebound

**

NOTE: Coordinate with paragraph Rebound Resistance, under paragraph DESCRIPTION.
**

Rebound resistance shall be [50] [100] [_____] percent.

2.5.1.5 Deformation Limits

**

NOTE: For structural steel doors, the deformation limit criteria for accidental explosion applications is given below.

<table>
<thead>
<tr>
<th>Prot. Cat. No.</th>
<th>Support Rotation (Deg.)</th>
<th>Ductility Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

A 2-degree support rotation and ductility ratio of 10 is recommended when post-blast opening is required. This deformation limit is recommended for conventional weapon and improvised weapon exterior door applications in order to avoid entrapment of personnel.

**

The ductility ratio shall not exceed [10 and the support rotation shall not exceed 2 degrees] [20 and the support rotation shall not exceed 12 degrees].

2.5.1.6 Hardware

**

NOTE: Coordinate with paragraph Hinges, under paragraph HARDWARE. A door pull is recommended.
Full surface hinges shall be Type [1] [2] [3]. [Multiple] [Jamb] latching points and [multiple lever handles] [,] [or] [a single lever handle] [,] [or] [a wheel handle] [,] [or] [a spoke lever handle] operated from [the seating face] [and] [opposite the seating face] with [manual] [self-latching] latch engagement and [either] sliding [or lever] latch bolts shall be provided. The latching mechanism shall be [safety] [or] [cover] plated. A [Type [I] [II] [III] straight steel bar door pull] [,] [and] [padlock] [shrouded padlock] [,] [and] [hasp] [high security hasp] [shrouded hasp] [,] [and] [door stop] [,] [and] [surface door closer] [overhead door holder] [,] [and] [gasket seals] [door silencer] [,] [and] [optical device] shall be provided.

2.5.1.7 Operating Forces

Maximum operating forces shall be [135] [180] [_____] N [30] [40] [_____] lbf to set the door in motion and [90] [_____] N [20] [_____] lbf to swing the door. Maximum force to engage and release latches shall be [90] [135] [180] [_____] N [20] [30] [40] [_____] lbf. [Operating forces shall conform to NFPA 101.]

2.5.1.8 Accessories

A [removable threshold] [or] [ramp] [and] [self-rescue kit] shall be provided.

2.5.2 Door [_____] Concrete

Type shall be [reinforced concrete] [double reinforced concrete] door with [fixed] [or] [removable] [mullion] [and] [with] [spall plate] [faceplates].

2.5.2.1 Type

Overpressure shall be [_____] kPa psi [with a [_____] millisecond duration] in the [seating] [unseating] direction [and [_____] kPa psi with a [_____] millisecond duration in the unseating direction]. The [shock and gas overpressure] [overpressure] waveform shall be as indicated.

2.5.2.3 Fragment

[The fragment shall be [_____] g ounces with a velocity of [_____] m/s fps]
and impact [normal to] [at an angle of [_____] degrees measured from] the door face.] [The nominal door thickness shall not be less than [100] [200] [_____] mm [4] [8] [_____] inches].

2.5.2.4 Rebound

**

NOTE: Coordinate with paragraph Rebound Resistance, under paragraph DESCRIPTION.
**

Rebound resistance shall be [20] [100] [_____] percent.

2.5.2.5 Deformation Limits

**

NOTE: For reinforced concrete doors, the deformation limit criteria for accidental explosion applications is given below.

<table>
<thead>
<tr>
<th>Door Type</th>
<th>Prot. Cat. No.</th>
<th>Support Rotation (Deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way acting without stirrups</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>One-way acting with stirrups</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Two-way acting</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

A support rotation of not more than 2 degrees is recommended when post-blast opening is required. This deformation limit is recommended for conventional weapon and improvised weapon exterior door applications in order to avoid entrapment of personnel.

**

[The door support rotation shall not exceed [1 degree] [2 degrees] for one-way acting doors without stirrups, [2] [4] degrees for one-way acting doors with stirrups, and [2] [8] degrees for two-way acting doors.] [The support rotation shall not exceed 2 degrees except that the support rotation for one-way acting doors without stirrups shall not exceed 1 degree.]

2.5.2.6 Hardware

Hinges shall be Type 2. [Multiple] [Jamb] latching points and multiple lever handles operated from [the seating face] [and] [opposite the seating face] with manual latch engagement and lever latch bolts shall be provided. Type [I] [II] [III] straight steel bar door pull [,] [and] [padlock] [shrouded padlock] [,] [and] [hasp] [high security hasp] [shrouded hasp] [,] [and] [door stop] [,] gasket seals [, and optical
2.5.2.7 Operating Forces

2.5.2.8 Accessories

A [removable threshold] [ramp] [and] [self-rescue kit] shall be provided.

2.5.3 Door [______]; Metal

By default, do not provide [Full surface] [Mortise] hinges. Specify the type of hinge, including [Mortise] hinges.

2.5.3.1 Type

Type shall be [hollow metal] [double hollow metal door with a [fixed] [or] [removable] mullion] [,] [galvanized] [;] [and] [thermal insulation] [sound-rated to STC [40] [_____] [, and] [fire-rated].

2.5.3.2 Overpressure

Overpressure shall be [_____] kPa psi in the [seating] [unseating] direction [and [_____] kPa psi in the unseating direction].

2.5.3.3 Rebound

Rebound resistance shall be [50] [100] [_____] percent.

2.5.3.4 Hardware

[Full surface] [Mortise] hinges shall be Type [1] [2] [3].

DELETE THE LATCH SENTENCE WHEN A MORTISE LOCK AND LATCH SET OR EXIT DEVICE IS SPECIFIED.

NOTE: Coordinate with subparagraph Hinges, under paragraph HARDWARE.

NOTE: Coordinate with subparagraph Rebound Resistance, under paragraph DESCRIPTION.

NOTE: Coordinate with paragraph Blast Door Operation, under paragraph DESCRIPTION.

NOTE: Coordinate with paragraph DESCRIPTION and with paragraph BLAST DOOR ASSEMBLIES.

The STC value bracketed is close to the highest obtainable for blast doors.
2.5.3.5 Operating Forces

**
** NOTE: Delete the latch operating force sentence when a mortise lock and latch set or exit device is specified. **
**

Coordinate with paragraph Blast Door Operation, under paragraph DESCRIPTION.

**
**

2.5.3.6 Accessories

A [removable threshold] [or] [ramp] shall be provided.

2.6 TESTS, INSPECTIONS, AND VERIFICATIONS

Submit shop and field operating test reports that include values for opening and closing forces and times, forces required to operate latches, and a description of all operating tests performed.

2.6.1 Prototype Static Test

**
** NOTE: Retain this paragraph when overpressure is specified without duration. **
**

Static tests on prototype door assemblies shall demonstrate that the door will resist the blast overpressure. Static tests will be accepted only if the door and frame proposed are manufactured using the same materials, dimensions, and tolerances as those in the prototype static test and the static overpressure used in the test is at least two times the blast overpressure. Static test reports shall be supplemented with calculations that demonstrate rebound resistance when rebound is not tested.

2.6.2 Prototype Blast Test

Blast tests on the prototype door assembly shall demonstrate that the door will resist the overpressure waveform. Blast tests will be accepted only if the door and frame proposed are manufactured using the same materials, dimensions, and tolerances as those in the prototype blast tests. The rise time of the test waveform shall be zero or subject to approval. [For an overpressure with infinite duration, the overpressure used in the test...
shall be not less than that specified or indicated for a duration equal to at least five times the natural period of the door and the test report shall be supplemented with calculations that demonstrate the specified or indicated rebound resistance. [For overpressure with finite duration, the overpressure waveform used in the test shall exceed the overpressure waveform in both peak overpressure and impulse and the blast test report shall be supplemented with calculations that demonstrate the specified or indicated rebound resistance when the positive phase waveform duration in the test exceeds the positive phase duration specified or indicated.] Submit certified test reports demonstrating blast resistance. Include in the test reports the name and location of the testing agency or laboratory, a description of the testing apparatus, the date of the tests, a description of the door specimen tested, descriptions of loadings, the value of measured peak door deflection and peak permanent set and analysis and interpretation of test results.

2.6.3 Shop Operating Test

Prior to shipment, each door assembly shall be fully erected in a supporting structure and tested for proper operation. Such testing shall include opening, closing, and operating all moving parts to ensure smooth operation and proper clearance, fit, and seating. Determine the operating forces and opening and closing times. Notify the Contracting Officer at least [7] [_____] calendar days prior to the start of testing and [all doors] [door [_____] [,] [_____] [,] [and] [_____]] shall be tested in the presence of the Contracting Officer. Prepare a test report and furnish [three] [_____] copies within [7] [_____] calendar days after testing.

2.6.4 Air Leakage Test

**
NOTE: Retain and edit this paragraph when door seals or thermal insulation are specified.
**

Factory test each door assembly for which [door seals] [or] [thermal insulation] [are] [is] specified for air leakage rate in accordance with ASTM E283. The rate of air leakage per unit length of crack shall not exceed [0.90] [_____] L/s [0.20] [_____] cfm using a pressure difference of [76.7] [_____] Pa [1.57] [_____] psf. Prototype tests can be substituted for door assembly tests when the prototype door, frame, and hardware tested are equivalent to that provided or when otherwise approved.

2.6.5 Sound Rating Test

**
NOTE: Retain this paragraph when sound-rated hollow metal doors are specified.
**

The sound transmission class (STC) rating shall be determined in accordance with ASTM E90.

2.6.6 Fire Rating Test and Inspection

**
NOTE: Retain this paragraph when fire rating is required. The door schedule on the drawings will indicate where fire-rated doors are to be used and
Fire-rated door assemblies shall bear the listing identification label of the UL, or other nationally recognized testing laboratory qualified to perform tests of fire door assemblies in accordance with NFPA 252 and having a listing for the tested assemblies. Doors exceeding the size for which listing label service is offered shall be inspected in accordance with NFPA 80, NFPA 80A, and NFPA 101. A letter may be submitted by the testing laboratory (in lieu of a UL listing for fire door assemblies) which identifies the submitted product by manufacturer and type or model and certifies that it has tested a sample assembly and issued a current listing. Submit certificate of inspection conforming to NFPA 80, NFPA 80A, and NFPA 101 for fire doors exceeding the size for which label service is available.

PART 3 EXECUTION

3.1 INSTALLATION

Install doors and frames in accordance with the manufacturer's written instructions. [Place concrete in reinforced concrete doors using the door manufacturer's standard forms.] [Pressed steel frames for hollow metal doors shall be fully grouted.] Finish paint exposed surfaces in accordance with Section 09 90 00 PAINTS AND COATINGS. Repair galvanized surfaces damaged prior to final acceptance in accordance with ASTM A780/A780M to the same thickness as the original galvanizing.

3.2 TESTS

After installation is completed, field test each door for operation, clearance, fit, and seating by operating the door and hardware through at least 10 operating cycles. Test door and hardware operation using the forces specified. Provide personnel and equipment required to perform field testing. Unless waived, perform all field tests in the presence of the Contracting Officer. After testing is completed, prepare test reports and furnish [three] [_____] copies.

3.3 MANUFACTURER'S FIELD SERVICE

Perform installation and testing of door assemblies under the supervision of the door manufacturer's erection engineer. Upon completion of the work, and at a time designated by the Contracting Officer, provide the services of one engineer and other technical personnel, as required, for a period of not less than [4] [_____] hours to instruct Government personnel in the operation and maintenance of the blast doors and all other items furnished under this specification. Include in the instructions videotapes and use of the operation and maintenance manual. Submit an instruction outline and procedure for approval prior to scheduling the instruction and information describing training to be provided, training aids to be used, and background data on the personnel conducting the training.