This instruction implements AFPD 32-10, Installations and Facilities. It assigns maintenance responsibilities and requirements for electrical grounding systems on Air Force installations. This includes systems for equipment grounding, lightning protection, and static protection. This instruction also implements the maintenance requirements of DoD 6055.09-M, Volume 2, Ammunition Explosives Safety Standards, Enclosure 4, Lightning Protection, February 2008, for potentially hazardous explosives facilities. This publication may be supplemented at any level, but all direct Supplements must be routed to the Office of Primary Responsibility (OPR) of this publication for coordination prior to certification approval. The authorities to waive wing/unit level requirement in this publication are identified with a Tier (“T-0, T-1, T-2, T-3”) number following the compliance statement. See AFI 33-360, Publications and Forms Management, for a description of the authorities associated with the Tier numbers. Submit requests for waivers through the chain of command to the appropriate Tier waiver approval authority, or alternately, to the Publication OPR for non-tiered compliance items. Refer recommended changes and questions about this publication to the OPR using the AF Form 847, Recommendation for Change of Publication; route AF Forms 847 from the field through the appropriate functional chain of command. Ensure that all records created as a result of processes prescribed in this publication are maintained in accordance with (IAW) Air Force Manual (AFMAN) 33-363, Management of Records, and disposed of IAW the Air Force Records Information Management System (AFRIMS) Records Disposition Schedule (RDS). The use of the name or mark of any specific manufacturer, commercial product, commodity, or service in this publication does not imply endorsement by the Air Force.
SUMMARY OF CHANGES

This document has been substantially revised and must be completely reviewed. Major changes include the addition of Tier waiver authority requirements, updated office symbols, and updated references.
Section A—Maintenance Policy

1. Responsibilities.
1.1. **Air Force Director of Civil Engineers (AF/A4C).** Establish policy for Grounding Systems.

1.2. **Air Force Civil Engineer Center (AFCEC).**

 1.2.2. Reviews emerging and evolving technologies and evaluates for applicability to the Air Force. (T-1)

 1.2.3. Evaluates grounding and bonding training conducted internal to the Air Force, conducted by the Defense Ammunitions Center (DAC), and conducted by the private sector. (T-1)

 1.2.4. Assists major commands (MAJCOMs) and Direct Reporting Units (DRUs) and installations with inspection of grounding and bonding systems and with troubleshooting electrical issues which are suspected to stem from grounding and bonding issues and discrepancies.. (T-1)

 1.2.5. Assists Air Force Safety Center and Inspector General personnel with determination of equivalency of grounding and bonding protection systems. (T-1)

1.3. **The Base Civil Engineer (BCE).**

 1.3.1. Maintain lightning and grounding systems specifically identified in Table 1 according to the procedures in this instruction. (T-0)

 1.3.2. Make sure that user organizations identified in Table 1 are aware of their maintenance responsibilities. (T-1)

 1.3.3. Train users to perform their responsibilities to inspect and maintain lightning and grounding systems as identified in Table 1 when requested. On Installations where the electrical utility system is owned by a private entity, consult with the private/system owner. (T-1)
Table 1. Scheduled Maintenance for Grounding Systems.

<table>
<thead>
<tr>
<th>Facility or System</th>
<th>Action Required</th>
<th>Frequency of Action</th>
<th>Responsible Organization</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
</table>
2. It is not necessary to perform the 5-year inspection of the system in a single year; however at the end of 5 years documentation must show that the entire system has been inspected.
3. If utility is privatized, this does not apply; however safety and operational discrepancies and damage should be reported when observed. |
| 1. Exterior Electrical Distribution | b. Physical continuity of grounds for separately derived systems | 2 years | Base Civil Engineer | This AFI | Purpose is to ensure that ring currents are not established by the existence of grounds for multiple systems and equipment. |

<table>
<thead>
<tr>
<th>2. Electrical Substation ¹ (if base owned or totally/partially maintained by the base)</th>
<th>a. Continuity check across gate opening (1 ohm or less)</th>
<th>5 years</th>
<th>Base Civil Engineer</th>
<th>AFJMAN 32-1082; NETA MTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b. Ground resistance measurement of entrance gate (5 ohms or less)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Exterior Lightning Arresters and/or surge suppressive devices on Primary Distribution Lines (even if privately owned).</td>
<td>Visual</td>
<td>5 years</td>
<td>Base Civil Engineer</td>
<td>AFJMAN 32-1082</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Purpose is to ensure reliability to the AF mission. Discrepancies should be reported, in writing, to the owner if other than AF.</td>
</tr>
<tr>
<td>4. General</td>
<td>a. Facility Service Entrance - visual inspection</td>
<td>When electrical work is performed at facility</td>
<td>Base Civil Engineer</td>
<td>NFPA 70 (NEC), Art 250, NFPA 70 (NEC)B, UFC 3-575-01, Lightning and Static Electricity Protection Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tag or mark in a conspicuous place, to indicate visual inspection date and initials of inspector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>b. Verify bonding of other systems to facility grounds</td>
<td>Upon new installation, installation or upgrade of other systems requiring grounding, and prior to contract acceptance</td>
<td>Base Civil Engineer</td>
<td>NFPA 70 (NEC)</td>
<td>Purpose is to ensure the integrity of the single point facility ground.</td>
</tr>
<tr>
<td>c. Visual inspection of lightning protection system</td>
<td>1-2 years, as determined by MAJCOM EE based on facility type</td>
<td>Base Civil Engineer</td>
<td>This AFI NFPA 780 UFC 3-575-01</td>
<td>Purpose is to note mechanical damage, lightning damage or discrepancies caused by repair, renovation, or addition.</td>
</tr>
<tr>
<td>d. Facility ground resistance check (25 ohms or less)</td>
<td>5 years</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td>5. POL Facilities</td>
<td>a. Resistance measurement on static grounds (10,000 ohms or less)</td>
<td>Upon installation and when observed to be physically damaged</td>
<td>Base Civil Engineer</td>
<td>UFC 3-460-03, 21 January 2003, Maintenance of Petroleum Systems</td>
</tr>
<tr>
<td></td>
<td>b. Visual inspection and mechanical check of ground conductor connections (pull test)</td>
<td>Quarterly, or before each use</td>
<td>User</td>
<td>UFC 3-460-03, 21 January 2003, Maintenance of Petroleum Systems, Para 10.3.20</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>c. Inspection of connection to grounding electrode</td>
<td>Annually</td>
<td>BCE</td>
<td>UFC 3-460-03, 21 January 2003, Maintenance of Petroleum Systems, Para 10.3.20</td>
</tr>
<tr>
<td></td>
<td>d. Facility Service - visual inspection</td>
<td>When electrical work is performed at facility</td>
<td>BCE</td>
<td>NFPA 70 (NEC), Art 250, NFPA 70 (NEC)B, Tag or mark in a conspicuous place, to indicate visual inspection date and initials of inspector</td>
</tr>
<tr>
<td>6. Fuels Lab</td>
<td>a. Visual inspection and continuity validation of equipment grounds</td>
<td>Monthly</td>
<td>User</td>
<td>AFI 91-203 para 36.5.4.2.2. & 36.5.4.2.3.</td>
</tr>
<tr>
<td></td>
<td>b. Visual inspection of facility grounds</td>
<td>Monthly</td>
<td>User</td>
<td>AFI 91-203</td>
</tr>
<tr>
<td>7. Aircraft Parking Apron Grounds and Hangar Floor Static Grounds</td>
<td>Resistance measurement on static grounds (10,000 ohms or less)</td>
<td>When installed or repaired</td>
<td>Base Civil Engineer</td>
<td>UFC 3-575-01, 1 Jul 12</td>
</tr>
<tr>
<td></td>
<td>Resistance measurement on static ground (10,000 ohms or less)</td>
<td>When installed, physically damaged, or repaired</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>8. LOX Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Rail Car Off-loading Spur</td>
<td>Visual inspection of rail bonding</td>
<td>Annually (If the rail car enters an explosive facility, test for continuity every two years)</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
<tr>
<td>10. Communications (＆ TEMPEST) Facilities</td>
<td>Resistance measurement at service entrance (10 ohms or less is design objective. If 10 ohms cannot be obtained after compliant installation of a ground loop, a reading of 25 ohms or less is acceptable.)</td>
<td>Quarterly for first year after installation; then every 21 months (see Note for this item.)</td>
<td>Base Civil Engineer</td>
<td>NFPA 70 (NEC) This AFI</td>
</tr>
</tbody>
</table>

Communications facilities require tiered surge suppression – protection at the main distribution panel and any sub-panel serving sensitive communication's equipment, HVAC, and at communication's equipment. Note: User has requested 21 months in order to comply with their references.
<table>
<thead>
<tr>
<th>11. Communications Equipment</th>
<th>Checks involving in-house electronic equipment ground</th>
<th>Determined by user from T.O. and equipment manufacturer</th>
<th>User</th>
<th>MIL-HDBK-419A</th>
</tr>
</thead>
</table>

Communications facilities require surge suppression devices (SPDs) on both the line and load sides of the main distribution panel, the line and load sides of any panel serving sensitive comm. equipment, and at the communications equipment itself.

Note: For sensitive communications equipment inside non-comm facilities, SPDs are required on the line and load sides of the panel serving sensitive communications equipment.
<table>
<thead>
<tr>
<th>12. Hazardous Explosives Area (Weapons)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| a. Visual inspection of static bus bars, grounding conductors, and bonds | Before using equipment each day and every 6 months | User | AFMAN 91-201, Para 5.13.3.2 and 5.23.4.2.3.3.1
Annually (for nuclear facilities) | This AFI |
| b. Resistance to ground for equipment bonding straps (10,000 ohms or less) | Before each use | User | AFMAN 91-201, Para 5.13.1 |
| c. Continuity across bonds, between bus bars, conductors, and bonding straps (less than 1 ohm) | 3 months or according to specific item T.O. | User | AFMAN 91-201, 5.24.2.1
NFPA 780, Ch 8 |
| d. Facility ground resistance check (25 ohms or less) | 24 months | Base Civil Engineer | NEC |
AFMAN 91-201, Para 5.13.1 |
| e. Conductive floor grounding check | Upon installation and when damage is noted. | Base Civil Engineer | AFMAN 91-201, Para 5.19.1
NFPA 780, Ch 8 |
| f. Visual inspection of Surge Suppressors | 6 months and after a lightning strike annually | User | AFMAN 91-201, Para 5.23.4.2.3.3.1
This AFI | Base Civil Engineer |
13. Non-Hazardous Explosive Area (Weapons)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Frequency</th>
<th>Responsible Party</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Visual inspection of static bus bar, conductor and bonds</td>
<td>Quarterly, Annually</td>
<td>User, Base Civil Engineer</td>
<td>AFMAN 91-201, Para 5.13.4, NFPA 780, Ch 8</td>
</tr>
<tr>
<td>b. Resistance to ground for equipment bonding straps (10,000 ohms or less)</td>
<td>Before each use</td>
<td>User</td>
<td>AFMAN 91-201 Para 5.13</td>
</tr>
<tr>
<td>c. Continuity check from equipment to static bus bar (1 ohm or less)</td>
<td>24 months</td>
<td>User</td>
<td>AFMAN 91-201 Para 5.13</td>
</tr>
<tr>
<td>d. Facility ground resistance check (25 ohms or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
<tr>
<td>e. Visual inspection of lightning protection system components</td>
<td>12 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
</tbody>
</table>

Intent of “quarterly” is every 90 days, +/- 5 days.
<table>
<thead>
<tr>
<th></th>
<th>f. Resistance measurement on lightning protection earth to ground system (25 ohms max)</th>
<th>24 months</th>
<th>Base Civil Engineer</th>
<th>AFMAN 91-201, Para 5.24.2.2; This AFI</th>
<th>AFMAN 91-201 refers to AFI 32-1065</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g. Continuity validation on air terminals, bonds, and conductor connections (1 ohm or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>AFMAN 91-201; this AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. Static bus bar continuity to ground (1 ohm or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>AFMAN 91-201; this AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Facility Single Point Ground system resistance check</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Visual inspection of grounding system</td>
<td>12 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td>14. Protective Aircraft Shelter ³ Vault</td>
<td>c. Continuity between arch and ground (1 ohm or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. (HAS) Validate door hinge continuity (1 ohm or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. (HAS) Continuity between vault lip (flange) and ground (conduit) (1 ohm or less)</td>
<td>24 months</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Continuity of installed (permanent) bonds between metal masses and steel support</td>
<td>When notified of damage</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. Visual inspection of permanent bonds between metal masses and steel support</td>
<td>Annually</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a. Resistance validation (25 ohms or less)</th>
<th>5 years</th>
<th>Base Civil Engineer</th>
<th>NFPA 99, Standard Health Care Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b. Effectiveness of grounding system by voltage and impedance measurements</td>
<td>Before acceptance of new facility or after service entrance modification</td>
<td>Base Civil Engineer</td>
<td>AFI 41-203, Electrical Safety in Medical Treatment Facilities; NFPA 99</td>
</tr>
<tr>
<td></td>
<td>c. Verification of continuity of receptacle grounding circuits</td>
<td>Annual (semi-annual for critical care areas)</td>
<td>Base Civil Engineer</td>
<td>AFI 41-203</td>
</tr>
<tr>
<td>16. Airfield Lighting Vault Single Point Facility Ground</td>
<td>Resistance check (25 ohms or less)</td>
<td>2 years</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>17. EMP Hardened Facilities</td>
<td>(These facilities may have special requirements) Otherwise, resistance check (25 ohms or less)</td>
<td>2 years</td>
<td>User</td>
<td>DNA-A-86-60, Vol 1-3</td>
</tr>
<tr>
<td>18. PMEL</td>
<td>a. Visual inspection of equipment bonds</td>
<td>Before each use</td>
<td>User</td>
<td>This AFI</td>
</tr>
<tr>
<td></td>
<td>b. Continuity check from equipment to static bus bar (1 ohm or less)</td>
<td>Determined by user from T.O. and equipment manufacturer</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Checks involving in-house electronic equipment grounds</td>
<td>Determined by user from T.O. and equipment manufacturer</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Continuity and resistance test of facility ground (10 ohms or less)</td>
<td>5 years</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AFMAN 32-1094</td>
</tr>
<tr>
<td>19. Special Intelligence, Cyber, SCIF, UAS and Other Special-Use Facilities</td>
<td>a. TBD by Authority Having Jurisdiction (AHJ)</td>
<td>Base Civil Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. TBD by AHJ</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Surge Protective Devices</th>
<th>a. Visual inspection</th>
<th>After unscheduled power outages</th>
<th>User</th>
<th>This AFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Visual inspection</td>
<td>Quarterly</td>
<td>Base Civil Engineer</td>
<td>This AFI</td>
<td></td>
</tr>
</tbody>
</table>

1. If utility is privatized, this does not apply; however safety and operational discrepancies and damage should be reported when observed.
2. As defined in NEC Article 500
3. Also known as Hardened Aircraft Shelter (HAS), as determined by current Security Forces AFIs.
4. Base Civil Engineers will perform if separate medical facility maintenance branch does not exist, under Memorandum of Agreement.

Note: All incoming services should be verified for continuity by the service provider every 5 years (i.e., gas, telephone, signal lines, CATV).

1.3.4. Review the lightning protection system on each facility at least annually or after repair actions (including facility repairs and construction additions by contractors) have been completed.

1.4. Users. Users will maintain lightning and electrical grounding systems as identified in Table 1.

2. Codes and Specifications. Follow applicable codes and specifications in Attachment 1 unless modified in this instruction, or deviations are justified due to local conditions. (T-0)

3. Required Maintenance. Perform required maintenance at the frequencies specified in Table 1. When possible, plan for and schedule maintenance when facility users will be least affected. (T-0)

4. Recordkeeping and Review.

4.1. Inspectors and testers must compile and maintain records of their inspections and tests to include (T-0):
4.1.1. A sketch of the grounding and lightning protection system showing test points, and where services enter the facility. Sketch should also show the location of the probes during the ground resistance test. (Separate sketches are suggested for static, earth ground, and lightning protection systems on large complex facilities.)

4.1.2. Date action was performed.

4.1.3. Inspector's or tester’s name.

4.1.4. General condition of air terminals, conductors, and other components.

4.1.5. General condition of corrosion protection measures.

4.1.6. Security of attachment for conductors and components.

4.1.7. Resistance measurements of the various parts of the ground terminal system.

4.1.8. Variations from the requirements of this instruction.

4.1.9. Discrepancies noted and corrective actions taken.

4.1.10. Dates of repairs.

4.2. Review records for deficiencies; also analyze the data for undesirable trends. If test values differ substantially from previous or original tests obtained under the same test procedure and conditions, determine the reason and make necessary repairs. (T-0)

4.3. Keep test and inspection records for a minimum of six inspection cycles. (T-1)

5. Forms. Suggest the use of Air Force general purpose forms (3100 series) to record tests. Use the format listed in MIL-HDBK-419A, *Grounding, Bonding, and Shielding for Electronic Equipments and Facilities* for communications facilities. Provide copies of completed forms to the facility user. For munitions facilities maintained by host nation civil engineers, the using agency must receive a copy of the completed forms. (T-1)

6. Personnel Qualifications. Workers maintaining, repairing, modifying, and testing grounding systems must be thoroughly familiar with test equipment operation; lightning protection, grounding, and bonding theory and practices; referenced codes and standards; and specific requirements and procedures in this instruction. Attachments 2 through 5 provide information suitable for use in training and familiarization. (T-0)

7. Developing Procedures. The organization performing inspections and tests must develop procedures based on the requirements in this instruction. (T-0)

Section B—Grounding Resistance and Continuity Tests and Visual Inspections

8. Testing Requirements. See Attachment 6 for resistance and continuity test requirements for typical systems. Instruments must be able to measure 10 ohms ±10 percent for ground resistance tests, and 1 ohm ±10 percent for continuity testing. Only instruments designed specifically for earth-ground systems are acceptable for ground resistance testing. Follow the manufacturer’s instruction manual except as modified herein when using the instruments. Earth ground resistance should be less than 25 ohms unless specified different in this document. Periodic tests should be made at approximately the same time each year to minimize confusion resulting from
seasonal changes (see Attachment 2). If the resistance measured during continuity tests is greater than 1 ohm, check for deficiencies and repair, then retest. When performing a continuity test over very long lengths of conductors (more than 20m with no parallel paths), readings above one ohm but less than 3 ohms may occur. This is acceptable. The MAJCOM electrical engineer may modify the test procedures due to local conditions, as long as the intent of the test is still achieved. (T-0)

9. Visual Inspections of Lightning Protection Systems. Inspect all visible parts of the system. (T-0) Pulling or tugging on conductors and connections to insure soundness is a necessary part of these inspections, but be careful not to damage the system in the process. Visual/physical inspection must determine if (T-0):

9.1. The system is in good repair.
9.2. There are loose connections that might cause high resistance joints.
9.3. Corrosion or vibration has weakened any part of the system.
9.4. Down conductors, roof conductors, and ground terminals are intact.
9.5. Braided bonding wires are excessively frayed (cross sectional area reduced by half).
9.6. Ground wires on lightning protection masts are damaged by lawn mowers or other equipment.
9.7. Conductors and system components are securely fastened to mounting surfaces. Relocate connections as necessary to better protect against accidental displacement.
9.8. Additions or alterations to the protected structure require additional protection.
9.10. The system complies with applicable sections of NFPA 780, Standard for the Installation of Lightning Protection Systems (Attachment 4) (T-0).

10. Visual Inspection of Facility Grounds. Unless otherwise specified by references in Table 1., conduct visual inspections as follows. Inspect all visible and accessible parts of the system. Determine if they are in good condition and the installation meets NEC requirements (Attachment 2) (T-0). Typical items to check:

10.1. The system is in good repair.
10.2. There are no loose connections.
10.3. The system neutral is grounded at the service entrance (this includes the connection to the grounding electrode).
10.4. Separately derived systems are properly grounded.
10.5. Flashover protection is installed on insulating fittings on underground metallic pipelines entering the facility.
10.6. Grounding systems within the facility are bonded together at ground level or below.

Section C—Grounding and Lightning Protection Requirements
11. **Introduction.** This section covers requirements for grounding and lightning protection systems, including systems installed on or in areas such as explosives buildings, magazines, operating locations and shelters. Use these requirements when inspecting to determine compliance and when repairing or modifying systems. See AFMAN 91-201, * Explosive Safety Standards (T-1).*

12. **Testing and Inspecting Static and Lightning Protection Systems and Grounding:**

 12.1. Procedures. Use Attachment 4 and Attachment 5 as a guide for establishing proper maintenance procedures and a check during self-inspections.

 12.3. Records. Keep records of test and inspections for explosives facilities for a minimum of six inspection cycles (see paragraph 4) (T-0). Figure 1 is an example sketch of a grounding and lightning protection system with test points.
Figure 1. Example Sketch of Test Points (Typical).

Structure:
Date Tested:
Tested By:

V₁ Rₐ

L₄ O O L₃

Top View

<table>
<thead>
<tr>
<th>L₁</th>
<th>L₂</th>
</tr>
</thead>
</table>

R₉ O

Front View

R.A.T.O.P.T. (OHMS) Remarks Action Taken

Legend:
L₁ = Air Terminal 1, etc.
V₁ = Vent 1, etc.
Rₐ = Reference Point A
R₉ = Reference Point B
D₁ = Door 1, etc.
13. Static Protection

13.1. Equipment Grounding. The best methods to eliminate or reduce the hazard from static electricity are bonding and grounding. Bonding minimizes potential differences between conductive objects. Grounding minimizes potential differences between objects and the ground. Inspect and test facilities for compliance with NFPA 77, Static Electricity, which contains the minimum acceptable static grounding and bonding requirements for Air Force activities, except as modified herein (T-0).

13.1.1. Bonding and grounding wires must be large enough to withstand mechanical damage. Minimum size for existing bonds is AWG No. 8. Make repairs with wires no smaller than AWG No. 6 copper. Static grounds for portable or movable equipment must use braided cable for added flexibility. (T-0)

13.1.2. Static grounds must be 10,000 ohms or less, unless otherwise stated. Static electricity creates extremely small (milliamps) currents, so even this large resistance is small enough to bleed off static charges. But because the static grounding system must be connected to the facility grounding system, resistances of less than 25 ohms are common. (T-0)

13.2. Static Bus Bars. Static bus bars are usually 2- by 1/4-inch copper bars installed on the interior wall of the facility. Bond static bus bars directly to each lightning protection down conductor where it crosses the down conductor if separation between the two is within NFPA 780 bonding distance and the bus or down conductor cannot be relocated. They must also be connected directly to the facility grounding electrode system. See Attachment 6 for testing requirements. Use static bus bars only for static grounding. Do not connect telephone grounds, electrical conduit or intrusion systems to this bus. Static bus bars must not be used as a grounding medium for these systems. As a general rule, do not connect a static bus to any facility metal body or use this bus to ground structural components of a facility; however, coincidental connections of the bus bar through its anchoring/mounting system are acceptable as is the mounting of the static bars on the skin of a metal structure. Portable grounding straps from equipment to the static grounding bus are not real property. Visual inspections and continuity checks for these straps are the responsibility of the user. (T-0)

13.3. Belting Requirements. On equipment such as belt-driven compressors and conveyor belts, if static electricity is a hazard, use non-static-producing belting. Belting must have a resistance not exceeding 1,000,000 ohms when measured according to IEEE STD 142, chapter 3. (T-0)

13.4. Conductive Floor Grounds. If the facility requires conductive floors, the resistance of the floor must be less than 1,000,000 ohms. Additionally, the resistance between the floor and ground connections must not be less than 25,000 ohms. This requirement protects personnel from electric shock hazard and allows bleed off of static buildup in people and operating equipment. See Attachment 6 for testing requirements. The testing and using agency must keep a record of test results. (T-0)

14. Lightning Protection Systems. AFMAN 91-201 identifies explosives facilities that require lightning protection systems. Many other structures housing critical or sensitive supplies or
equipment also require protection. The following requirements will be used as a guide for facilities that require lightning protection. (T-1)

14.1. General. Systems must comply with NFPA 780 and AFM 88-9, Chapter 3, *Electrical Design Lightning and Static Electricity Protection* (except as modified herein). (T-0) Early streamer emission systems or charge dissipation systems are not permitted. Parts and materials must carry the Underwriters Laboratories (UL) label or equivalent. (T-0) Otherwise, such components must be approved by the MAJCOM electrical engineer in charge of lightning protection. (T-2) Facilities in foreign countries may use host nation codes and standards if they offer equivalent protection, as determined by the MAJCOM electrical engineer with concurrence from HQ AFCEC/COSM and approval of the DoD Explosive Safety Board (DDES). (T-0) Otherwise, the Status of Forces Agreement (SOFA) must permit their use. Where the SOFA requires compliance with host nation codes, translate those required codes into English, make them available to all appropriate personnel, and perform necessary training. Maintain all installed systems according to this instruction. If not required, remove the LPS system with coordination through the using agency. (T-0)

14.2. Bonding Requirements. Adequate bonding is more important than grounding. Bonding ensures all metallic objects are at equal potentials, preventing dangerous flashovers. Inspect and test facilities for compliance with NFPA 780 and Attachment 3 of this instruction. (T-0)

14.3. Grounding Resistance. Low resistance is desirable but not essential for lightning protection. For most facilities, resistance to ground should be less than 25 ohms. If this cannot be achieved where only ground rods are used (no ground loop conductor), install a ground loop conductor. The resistance to ground of a ground loop system is acceptable even if greater than 25 ohms. See Attachment 2.

14.4. Lightning Protection For Explosives Facilities. Use the basic practices in Attachment 4, with the following additions:

14.4.1. The system must be designed for a 30.5-meter (100-foot) striking distance. (T-0)

14.4.2. Installation of ground wells (hand holes) at corner ground rods is recommended to aid access for testing.

14.4.3. Replace existing bolted connectors on down conductors and roof conductors needing repair with high compression or exothermic-weld type connectors. Connections to air terminals are an exception, but they must be tight and in good repair. Bolted connections to aluminum bodies (such as vents) and to metal bodies for the purpose of bonding are also acceptable. Brazing to metal bodies is allowed but not recommended due to the possibility of a cold weld with inadequate strength. (T-0)

14.4.4. Structural elements of a facility may serve as air terminals, down conductors, or the earth electrode.

14.5. Explosives Facilities with Large Perimeters. New explosives facilities (including igloos) with a perimeter over 91.4 meters (300 feet) that require lightning protection and do not use the structural steel as the air terminals must use either a mast system or an overhead wire system. See Attachment 4 for requirements. Since these systems provide better protection, and maintenance is easier, consider using this type of protection for other kinds of facilities. The MAJCOM may waive this requirement (overhead or mast system). (T-2)
14.6. Protective Aircraft Shelters (PAS) (also known as Hardened Aircraft Shelter (HAS)). PASs with interior steel arches or interconnected rebar (i.e., floor rebar that is connected to wall rebar) and grounded ventilators of metal at least 4.78 millimeters (0.188 inch) thick do not need air terminals. Metal ventilators less than 4.78 millimeters (0.188 inch) thick must be protected by an air terminal. All metal bodies in the PAS must be properly bonded and grounded. See Attachment 3. An adequate grounding system is also required. (T-0)

14.7. Air Force-approved inspectors, with authority to recommend acceptance of LPSs that protect explosives facilities and communications facilities, are limited to: (T-1)

14.7.1. Nationally recognized inspection agencies who have a minimum 10 years’ experience in inspection of LPS for explosives facilities on DoD or DoE installations and who have exhibited accuracy in identification of discrepancies, evidenced by no modifications having been required to the system during the warranty period (see UFC 3-575-01).

14.7.2. Air Force personnel who have minimum 6 years’ experience in LPS maintenance and have taken an advanced lightning protection systems senior inspector course.

15. Surge Protection

15. Surge Protection is required IAW NFPA 780. (T-0) Surge protective devices (SPDs), formerly referred to as TVSS (transient voltage surge suppression), protect equipment from transient voltages resulting from lightning and switching surges and protect the upstream distribution system from the rapid switching effects of electronics. SPDs are most effective when used in the form of tiered protection. Tiered protection means providing protection at main distribution panels, at secondary or sub-panels and at the equipment point of use. For protection of non-real property installed equipment, refer to the equipment manufacturers’ requirements for surge protection.

15.1. Minimum Requirements for Surge Protective Devices for weapons storage areas (WSAs), munitions storage areas (MSAs) and communications facilities are:

15.1.1. Standard, published, minimum 15-year unlimited replacement warranty on product (SPD). The entire unit shall be replaced upon detection of the failure of any mode. (T-1)

15.1.2. All mode (10 modes), directly connected protection elements (l-n, l-g, l-l, n-g) (T-1)

15.1.3. All steel enclosure, with UL-approved fasteners. (T-1)

15.1.4. Internal over-current fusing on each phase for self-protection from failed component(s), and an internal disconnect for each phase. (T-1)

15.1.5. Individual component level thermal fusing(T-1)

15.1.6. Bi-polar protection (T-1)

15.1.7. The SPD shall contain continuous, self-monitoring devices with indicator lamps for each mode. These may be located inside enclosed areas such as mechanical rooms if an indicator lamp is provided in a visible area. It would be preferable for the indicator lamp to be installed in a location that can be seen from a vehicle, allowing maintenance
personnel to drive large areas and quickly identify devices which have operated. Indicator lamps that can be seen in this way will also allow maintenance personnel to assess whether a group of SPDs in a single area have operated. (T-1)

15.1.8. Cable connection between a bus and SPD shall be minimum No. 10 AWG for installation at main distribution panels and sub-panels. (T-1)

15.2. Igloos or Earth Covered Magazines (ECMs): up to 60A service

15.2.1. Visible indicators of SPD operation on exterior of facilities. Drive-by visual inspections may be an effective means of inspecting SPDs.

15.2.2. 60kA/mode to allow the following:

15.2.3. 180kA/phase peak service surge current

15.2.4. Non-modular. The entire unit shall be replaced upon detection of the failure of one mode of operation. Ease of installation shall not be traded for possible minimized protection level. (T-1)

15.3. Maintenance Facilities: 400-600A service (T-1)

15.3.1. Visible indicators of SPD operation on exterior of facilities. Drive-by visual inspections may be an effective means of inspecting SPDs

15.3.2. 180kA/mode to allow the following:

15.3.3. 240kA/phase peak service surge current

15.3.4. Non-modular. The entire unit shall be replaced upon detection of the failure of one mode of operation. Ease of installation shall not be traded for possible minimized protection level. (T-1)

15.4. Communications Facilities: up to 1800A

15.4.1. Visible indicators of SPD operation on exterior of facilities or audible alarm

15.4.2. 200kA/mode (this will allow the following requirement)

15.4.3. 600kA/phase peak service surge current

15.4.4. Non-modular. The entire unit shall be replaced upon detection of the failure of one mode of operation. Ease of installation shall not be traded for possible minimized protection level.

15.5. General Requirements: (T-1)

15.5.1. Nominal discharge current test @ 20kA (UL testing allows 10kA or 20kA, but testing at 10kA is not allowed for Air Force facilities).

15.5.2. Unit Type (UL 1449.2006, 9/29/09):

 15.5.2.1. Type 1 unit in front of service panel

 15.5.2.2. Type 1 or 2 unit on load side of service panel (not needed for igloos)
15.6. SPDs shall be provided on proprietary equipment by the communications provider or the tenant communications agency or group. (T-1)

JUDITH A. FEDDER, Lieutenant General, USAF
DCS/Installations, Logistics & Mission Support
Attachment 1

GLOSSARY OF REFERENCES AND SUPPORTING INFORMATION

References

Code of Federal Regulations
7 CFR 1724.50 – Compliance with National Electrical Safety Code
14 CFR 420.71 – Lightning Protection
30 CFR 56.12069 – Lightning Protection for Telephone Wires and Ungrounded Conductors

GAO Publications

DoD Publications
DoD 6055.09M, DoD Ammunition and Explosives Safety
DOD Explosives Safety Board Technical Paper 22, Lightning Protection for Explosives Facilities
MIL-HDBK-419A, Grounding, Bonding, and Shielding for Electronic Equipments and Facilities

Air Force Publications
AFI 32-1063, Electrical Power Systems
AFI 91-203, Air Force Consolidated Occupational Safety Instruction
AFI 41-203, Electrical Safety in Medical Treatment Facilities
AFMAN 91-201, Explosive Safety Standards
AFM 85-16, Maintenance of Petroleum Systems
AFM 88-9, Chapter 3, Electrical Design Lightning and Static Electricity Protection

Other
ANSI C2, National Electrical Safety Code (IEEE). (Copies available from The Institute of Electrical and Electronics Engineers, 345 East 47th Street, New York NY 10017.)
DNA-A-86-60, V1-3, DNA EMP Engineering Handbook for Ground-Based Facilities
IEEE STD 142, IEEE Recommended Practice for Grounding for Industrial and Commercial Power Systems (Green Book)
IEEE STD 446, *Recommended Practice for Emergency and Standby Power (Orange Book)* \(^1\)

NFPA 70, *The National Electrical Code* \(^2\)

NFPA 77, *Static Electricity* \(^2\)

NFPA 99, *Standard Health Care Facilities* \(^2\)

NFPA 780, *Standard for the Installation of Lightning Protection Systems* \(^2\)

Cold Regions Research and Engineering Laboratory (U.S.), *Electrical Grounding in Cold Regions* \(^3\)

NETA MTS, *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems*

Additional References

IEEE STD 81, *IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a ground System* \(^1\)

IEEE STD 1100, *IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment (Emerald Book)* \(^1\)

Notes:

\(^1\) Available from The Institute of Electrical and Electronic Engineers, 345 East 47th Street, New York NY 10017.

\(^2\) Available from National Fire Protection Association, 1 Batterymarch Park, Quincy MA 022699990.

\(^3\) Available electronically at: http://acwc.sdp.sirsi.net/client/search/asset/1012700

Abbreviations and Acronyms

AHJ—Authority Having Jurisdiction

ANG—Air National Guard

ANSI—American National Standards Institute

AWG—American wire gauge

BBF—basic bonding formula

BCE—Base Civil Engineer

DDESB—Department of Defense Explosive Safety Board

DoD STD—Department of Defense Standard

EMP—electromagnetic pulse

FIPS—Federal Information Processing Standard

IAW—In Accordance With

IEEE—Institute of Electrical and Electronics Engineers
IG—isolated ground
LOX—liquid oxygen
MAJCOM—major command
MIL HDBK—Military Handbook
MOV—metal oxide varistor
NBN—no bonding needed
NEC—National Electrical Code
NFPA—National Fire Protection Association
PAS—Protective Aircraft Shelter (also known as Hardened Aircraft Shelter (HAS))
POL—petroleum, oils, lubricants
PMEL—Precision Measurement Equipment Laboratory
SDS—separately derived system
SOFA—Status of Forces Agreement
T.O.—Technical Order
WS3—Weapon Storage and Security System

Terms

Air Terminal—The component of the lightning protection system intended to intercept lightning flashes, placed on or above a building, structure, or tower. A building’s grounded structural elements may be used as an air terminal. Sometimes air terminals are referred to as lightning rods.

Bonding—An electrical connection between an electrically conductive object and a component of a lightning protection system that is intended to significantly reduce potential differences created by lightning currents.

Conductor, Bonding—A conductor used for equalization potential between metal bodies and the lightning protection subsystem.

Catenary System—A lightning protection system consisting of one or more overhead wires. Each overhead wire forms a catenary between masts, and serves the function of both a strike termination device and a main conductor.

Conductor, Main—A conductor intended to carry lightning currents from the point of interception to ground terminals.

Copper Clad Steel—Steel with a coating of copper bonded on it.

Down Conductor, Lightning—The conductor connecting the roof conductors or overhead ground wire to the earth ground subsystem.
Ground Loop—A conductor, buried 3 to 8 feet from a structure, encircling the structure interconnecting ground electrodes. The conductor may be connected to buried copper or steel plates or ground rods.

These are installed to establish a low resistance contact with earth. (Also referred to as counterpoise, loop conductor, or closed loop systems.)

Facility Ground System—The electrically interconnected system of conductors and conductive elements that provides multiple current paths to earth. The facility ground system can include the earth electrode subsystem, lightning protection subsystem, signal reference protection subsystem, fault protection subsystem, static ground subsystem, as well as the building structure, equipment racks, cabinets, conduit, junction boxes, raceways, duct work, pipes, and other normally non-current-carrying metal elements.

Ground—The electrical connection to earth primarily through an earth electrode subsystem. This connection is extended throughout the facility by the facility ground system.

Ground Terminal—The portion of a lightning protection system such as a ground rod, ground plate, or ground conductor that is installed for the purpose of providing electrical contact with the earth.

Inherent Bond—Where metal bodies located in a steel-framed structure are electrically bonded to the structure through the construction.

Integral System—A system which uses air terminals mounted directly on the structure to be protected.

Lightning Protection System—A complete system consisting of components (such as air terminals, interconnecting conductors, ground terminals, surge suppression devices, and other connectors or fittings) and subsystems required to assure a lightning discharge will be safely conducted to earth.

Mast System—A lightning protection system using masts that are remote from the structure to provide the primary protection from a lightning strike.

Overhead Wire System—System using conductors routed over the facility, at a specified height, designed to provide the required zone of protection. Also known as overhead shield wire system and catenary systems.

Side Flash—Electrical arcing between metal objects caused by difference of potential from a lightning discharge.

Strike Termination Device—A component of a lightning protection system intended to intercept lightning flashes and connect these flashes to a path to ground. Strike termination devices include air terminals, masts, permanent parts of structures, and overhead wires in catenary systems.

TEMPEST—Unclassified name for investigation/study of compromising emanation.

Zone of Protection—Space below and adjacent to a lightning protection subsystem that is likely to avoid direct lightning discharges.
Attachment 2

BASIC REQUIREMENTS FOR GROUNDING SYSTEMS (T-0)

A2.1. Types of Grounds. There are five basic types of grounding systems which must be inspected if present in a facility: static grounds, equipment grounds, electrical system grounds, lightning grounds, and signal reference grounds.

A2.1.1. Static Grounds. A static ground is a connection between a piece of equipment and earth to drain off static electricity charges before they reach a sparking potential. Typically, static grounding involves connecting large metal objects such as fuel tanks or aircraft to earth through a ground rod. Static grounds are not part of an electrical power system. But if an equipment grounding conductor is adequate for power circuits, it is also adequate for static grounding.

A2.1.2. Equipment Grounds. Equipment grounding involves interconnecting and connecting to earth all non-current-carrying metal parts of an electrical wiring system and equipment connected to the system. The purpose of grounding equipment is to ensure personnel safety by reducing any charge in an equipment item to near zero volts with respect to ground. Equipment ground must be capable of carrying the maximum ground fault current possible without causing a fire or explosive hazard, until the circuit protective device clears the fault. An example is the bare copper wire or green insulated conductor connected to the frames of electric motors, breaker panels, and outlet boxes. The equipment ground is connected to an electrical system ground (neutral) only at the electrical service entrance of a building and should not exceed 25 ohms to ground.

A2.1.3. Electrical System Ground. The purpose of electrical system grounds is to stabilize voltage to ground and give a low impedance path for fault currents. One wire or point of an electrical circuit in an electrical system ground is connected to earth. This connection is usually at the electrical neutral (though not always), and is called the "system ground." Examples of electrical system grounds are generator or transformer neutral points connected to earth, and the grounded neutral of an interior wiring system. The resistance of most electrical system grounds below 600 Vac should not be more than 25 ohms. Medium voltage systems (1-15kV) frequently are grounded through a resistor (or reactor) and may exceed 25 ohms. This limits ground fault current to a manageable level.

A2.1.4. Lightning Grounds. The purpose of lightning grounds is to safely dissipate lightning strokes into the earth. They are part of a lightning protection system which usually includes air terminals (lightning rods), down conductors, arresters, and other connectors or fittings required for a complete system. The sole purpose of a lightning protection system for a facility is to protect the building, its occupants, and contents from the thermal, mechanical and electrical effects of lightning.

A2.1.5. Signal Reference Grounds. The purpose of a signal reference ground is to provide a low impedance signal reference system for electronic equipment to minimize noise-induced voltages and thereby reduce equipment malfunctions. Common configurations include planes and grids. See FIPS Pub 94, Guidelines on Electrical Power for ADP Installations, for details.
A2.1.6. Subsystem Grounds. Each of the grounding systems described above may be a subsystem of a total facility grounding system. All grounds (and subsystems) must be bonded together according to NFPA 780 and NFPA 70, *The National Electrical Code*. MIL-HDBK-419A contains example sketches of grounding subsystem interconnections.

A2.2. NEC Grounding Requirements. Electrical systems and circuit conductors are grounded to limit voltages during lightning and to facilitate overcurrent device operation in case of a ground fault. The NEC allows the system neutral to be grounded and limits the location of this neutral to earth connection to the source side of the service entrance disconnect or at a separately derived system (NEC, articles 250-23 and 250-26). Since the neutral will carry current under normal operating conditions, the NEC often refers to it as the *grounded* conductor. If a building service is at less than 1000 volts, a neutral conductor (if required by NEC, article 250-5) must be run to each service entrance from the servicing transformer and bonded to the disconnecting panel enclosure. In contrast to the neutral, the equipment ground conductor (green insulated or bare wire) is referred to as the *grounding* conductor. The grounding conductor is used to ground metallic enclosures and motor frames, and must be connected to neutral only on the source side of the service entrance disconnect.

A2.2.1. Facility Ground. The NEC requires a premises wiring system to have a grounding electrode at each service. This electrode may be of several different types or systems. Each of the types listed below must be bonded together to form the grounding electrode system. Where none of the listed electrodes are present, ground rods or ground plates must be used. Ground rods must be at least 2.44 meters (8 feet) in length (10 feet for lightning protection; see Attachment 4) and no closer than 1.83 meters (6 feet) from other rods or plates. Ground rods or plates must not be aluminum. The Air Force also prohibits stainless steel ground rods.

A2.2.1.1. Where a metal underground water pipe (uncoated) is in direct contact with the earth for 3.05 meters (10 feet) or more, do not bond around insulation flanges installed for cathodic protection. If the underground water pipe is the only electrode available, ground rods must supplement it.

A2.2.1.2. The metal frame of a building where the building is effectively grounded.

A2.2.1.3. An electrode encased by at least 51 millimeters (2 inches) of concrete, made of at least 6.1 meters (20 feet) of one or more steel reinforcing bars, located within and near the bottom of a concrete foundation or footing in direct contact with the earth. This is known as a Ufer ground.

A2.2.1.4. A ground ring encircling the building at least 0.76 meters (2.5 feet) deep. The ground ring must be at least 6.1 meters long and use at least AWG No. 2 copper (1/0 copper for lightning protection ground ring conductor; see Attachment 4).

A2.2.2. Separately Derived Systems (SDS). A separately derived system is a premises wiring system where power is derived from a generator, transformer, or converter. An SDS has no direct electrical (metallic) connection, including the neutral, to the supply conductors originating in another system. The neutral of an SDS must be connected to a nearby grounding electrode. In order of preference, this grounding electrode may be building steel, grounded water pipe, or a separate ground rod. The equipment grounding conductor (green
wire) is bonded to the neutral at this point only. A ground rod can be used only when other
types of grounding electrodes are not available. All grounding electrodes must be connected
to the facility grounding systems.

A2.2.2.1. Dry type transformers (isolation and non-isolation) are common sources of
SDSs in a facility. Usually, they are connected in a delta-wye configuration. SDS
transformers are widely used in sensitive electronic installations (computer power
distribution centers are essentially SDS transformers), since they effectively establish a
local ground at the electronic equipment. This minimizes the impedance to ground as
seen by the load.

A2.2.2.2. Standby or emergency generators are also common sources of separately
derived systems. However, a generator connected to a facility through a transfer switch is
not a separately derived system if the neutral conductor remains connected to the normal
commercial power source neutral after transfer (the neutral is not switched along with the
phase conductors). In this case, the required connection of the neutral to the facility’s
grounding electrode system for both the commercial power source and the generator must
be made only on the supply side of the commercial power service disconnect. Providing
an additional connection between the generator neutral and a grounding electrode at the
generator would be a grounding connection on the load side of the service disconnect and
a violation of the NEC. Refer to IEEE Standard 446, Recommended Practice for
Emergency and Standby Power (The Orange Book), for additional information and
requirements on grounding emergency and standby generators.

A2.3. Grounding Electrodes.

A2.3.1. Connection To Earth. The most practical method of connecting to earth is to bury a
solid body, such as a metal rod, pipe, or sheet, and connect a grounding conductor to it. This
solid body is known as a grounding electrode.

A2.3.2. Methods for Obtaining Better Grounds. Frequently a satisfactorily low electrode
resistance cannot be obtained because of high soil resistivity. Use the following methods if it
is necessary to lower the resistance of the electrode.

A2.3.2.1. Deeper Rod. As a rod is driven more deeply into the soil, it not only has more
surface contact with the earth, but it also begins to reach soil which is more conductive.
The deeper the electrode, the less the effect of surface moisture content and temperature
changes.

A2.3.2.2. Parallel Ground Rods. Rods driven in parallel to each other should have space
between them at least the length of the rods. Multiple rods connected by a conductor have
a greater ability to equalize potential over the installation area.

A2.3.2.3. Soil Replacement. You can significantly lower the resistance of a ground rod
by lowering the resistivity of the soil immediately surrounding it. Use a mixture of 75
percent gypsum, 20 percent bentonite (well driller’s mud), and 5 percent sodium sulfate.
This mixture is available from cathodic protection supply companies. The mixture is
better than chemical salts because it lasts much longer and chemical salts may not be
compatible with environmental requirements.
A2.3.2.4. Concrete Encapsulation. Encapsulating ground rods with concrete increases their effective diameter. The concrete absorbs water from the soil, increasing the conductivity directly around the electrode. When buried in the earth, the resistivity of concrete is about 3,000 ohm-cm.

A2.3.2.5. Other Methods. Other more elaborate methods include installation of a ground loop conductor and extensive wire networks.

A2.4. Grounding and Corrosion. Copper grounding has been the standard of the electrical industry almost from inception. Because it is cathodic to all common construction materials, corrosion often results when copper is in contact with ferrous structures. Bonding underground ferrous structures to copper grounding systems can create serious corrosion problems.

A2.4.1. Corrosion of Pipelines. A typical situation exists when a facility’s copper grounding system is bonded to a coated steel pipeline (such as petroleum, oils, or lubricants (POL) or natural gas) entering the facility. Outside the facility the pipe is buried in low resistivity soil. Corrosion current will be high because of the potential between copper and steel, the low resistance circuit, and concentrated at the voids (holidays) in the pipe coating. One common solution to this problem is to use galvanized steel rather than copper ground rods. Another is to install an insulating fitting above the ground in the pipeline where it exits the soil and as it enters the building. Note that while the aboveground portion of the pipeline is grounded for safety, the underground portion is already grounded by contact with the soil. The resistance to earth of a typical coated piping system is usually 1 to 5 ohms.

A2.4.2. Hazardous Voltages. If insulating fittings are installed on a pipeline, take precautions against lightning flashover at the fittings or a dangerous potential difference between the pipe sections. Connect a metal oxide varistor (MOV) lightning arrester, zinc grounding cell, or an electrolytic cell across the insulating device. The clamping voltage should be 3.14 times the maximum output voltage of the rectifier of the cathodic protection system.

A2.4.3. Zinc Grounding Cell. A zinc grounding cell is made of two bars of 3.55 by 3.55 by 152.4-centimeter (1.4 by 1.4 by 60-inch) zinc separated by 2.54 centimeter (1-inch) spacers. Each bar has an insulated AWG No. 6 stranded copper conductor silver-brazed to a 0.64-centimeter (0.25-inch) diameter steel core rod. The unit comes prepackaged in a bag of low resistivity backfill (75 percent gypsum, 20 percent bentonite, and 5 percent sodium sulfate). The nominal resistance of a two anode grounding cell is 0.4 ohms. For lower resistance, a four cross-connected zinc anode cell with a resistance of 0.2 ohms is available. This resistance acts as an open circuit to the low dc voltage corrosion current, but like a short to lightning or 120 Vac commercial current.

A2.4.4. Electrolytic Cell. An electrolytic cell (Kirkcell) consists of multiple pairs of stainless steel plates immersed in a potassium hydroxide electrolyte solution with an oil film floating on top to prevent evaporation. The cell acts like an electrochemical switch, blocking low dc voltages in the cathodic protection range, but instantaneously shunting ac or higher dc voltages to ground.
Attachment 3 (T-0)

BASIC BONDING REQUIREMENTS

A3.1. **Basic Requirements.** The following are basic bonding requirements for lightning protection. See NFPA 780 for more details. Three different conditions or situations determine the requirement for a bond.

<table>
<thead>
<tr>
<th>Condition 1</th>
<th>Condition 2</th>
<th>Condition 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long vertical metal bodies 18.3 meters (60 ft) in vertical length</td>
<td>Grounded metal bodies</td>
<td></td>
</tr>
<tr>
<td>a. Structures 12.2 m (40 ft) and less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Structures more than 12.2m (40 ft) in height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Within 18.3 m (60 ft) from top of structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Below 18.3 m (60 ft) from top of structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated (nongrounded) metallic bodies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A3.2. **Condition 1.** This condition addresses long, vertical metal bodies, grounded and ungrounded, exceeding 18.3 meters in vertical distance. For steel framed structures these long, vertical metal bodies must be bonded as near as practical at their extremities to structural steel members. For reinforced concrete structures where the reinforcement is interconnected and grounded, these long, vertical metal bodies must be bonded to the lightning protection system (unless inherently bonded through construction) at their extremities. For other structures bonding is determined the same as Condition 2.

A3.3. **Condition 2.** This condition addresses bonding of grounded metal bodies not covered by Condition 1. Where grounded metal bodies are connected to the lightning protection system at only one extremity, use the following formula to determine if additional bonding is necessary:

$$D = \frac{hK_m}{6n}$$

This basic bonding formula (BBF) is used in all Condition 2 subcategories. Only the parameter n may be defined differently. K_m is defined the same in all cases and is equal to 1.0 if the flashover is through air; or 0.5 if through dense material, such as concrete, brick, or wood.

A3.3.1. **Condition 2a.** For grounded metal bodies in structures 12.2 meters (40 feet) and less in height, the following apply.

h = the greatest vertical distance between the bond being considered and the nearest other lightning protection system bond (or to ground level if no other bond is present).

$n = 1$ where only one down conductor is within a 30.5-meter (100-foot) radius of the bond in question.

$n = 1.5$ where only two down conductors are within a 30.5-meter radius of the bond in question.

$n = 2.25$ where three or more down conductors are within a 30.5-meter radius of the bond in question.

Where any two down conductors are not separated by at least 7.6 meters, they must be considered as one down conductor. An example of this calculation is shown in Figure A3.1. The height of the building is 10.7 meters (35 feet). A is a metal pipe grounded at one end, but close to down conductor.

B is the only down conductor within 30.5 meters of the point in question, so $n = 1$. Since any flashover would occur through the wall, $K_m = 0.5$. The BBF is $D = \frac{h}{6(1)}(0.5) = (9.14/6)(0.5) = (1.52)(0.5) = 0.76$ meters (2.5 feet). This means that if pipe A is 0.76 meters or closer to the down conductor at the point in question (9.14 meters in height), bond it through the wall to the down conductor.
A3.3.2. Condition 2b(1). For grounded metal bodies in structures more than 12.2 meters (40 feet) in height and where the bond in question is within 18.3 meters (60 feet) from the top of the structure, the following definitions apply.

\(h = \) the greatest vertical distance between the bond being considered and the nearest other lightning protection system bond (or to ground level if no other bond is present).

\(n = 1 \) where only one down conductor is within a 30.5-meter radius of the bond in question. Down conductors must be spaced at least 7.6 meters apart.

\(n = 1.5 \) where two down conductors are within a 30.5-meter radius of the bond in question. Down conductors must be spaced at least 7.6 meters apart.

\(n = 2.25 \) where three or more down conductors are within 30.5 meters of the bond in question. Down conductors must be spaced 7.6 meters apart.

Figure A3.2. shows bond fitting Condition 2b(1). The vertical height, \(h_1 \), is 22.9 meters (75 feet). In this case, the two down conductors are within 30.5 meters of the bond at D1, and \(n \) equals 1.5. Again, the flashover would be through the wall, so \(K_m = 0.5 \). The BBF is \(D_1 = (\frac{22.9}{6}(1.5))0.5 = (\frac{22.9}{9})(0.5) = 1.27 \) meters (4.17 feet). If pipe A is 1.27 meters or closer to the down conductor, bond it to the down conductor through the wall.

A3.3.3. Condition 2b(2). For grounded metal bodies where the bond in question is below the top 18.3 meters of a structure which is greater than 12.2 meters (40 feet) in height, the following definitions apply.

\(h = \) the vertical distance between the bond being considered and the nearest other lightning protection system bond (or to ground level, if no other bond is present).

\(n = \) the total number of down conductors (spaced 7.6 meters apart) in the lightning protection system.

This type of bond is shown in Figure A3.2. Pipe B comes close to a down conductor at a height below the top 18.3 meters of the structure. \(K_m \) would be 0.5 for a flash through the wall and \(n \) would be the total number of down conductors for the system (assume 4). The BBF would be \(D_2 = (\frac{h_2}{6}(4))0.5 = 10.7/24(0.5) = 0.22 \) meters (0.73 feet). The pipe B would have to be bonded through the wall to the down conductor at this location if it is 0.22 meters or closer to the conductor. Note that for buildings between 12.2 and 18.3 meters in height, Condition 2b(1) would apply.
Figure A3.1. Typical Bonding Conditions in Structures 12.2 Meters (40 Feet) or Less.
Figure A3.2. Typical Bonding Conditions in Structures Greater Than 12.2 Meters (40 Feet).

A3.4. **Condition 3.** Condition 3 concerns ungrounded metal bodies positioned to effectively short part of the separation distance between a grounded metal body and a lightning conductor. In Figure A3.3., a window is located between a grounded metal body and a lightning protection down conductor. First, calculate the bonding distance between the grounded body and down conductor by using the BBF according to the correct condition [2a, 2b(1), or 2b(2)]. This will provide a distance for D. If the distance $a + b$ is less than or equal to D, then the down conductor must be bonded directly to the grounded metal body. Note the window itself does not have to be bonded. Continuity tests should be performed to determine if the object is grounded, and not ungrounded, as it may appear.
A3.5. Typical Air Force Situation. Figure A3.4. depicts a situation which typically occurs at Air Force bases. Objects 1 through 4 are various types of metallic electrical enclosures. These are required by the NEC to be grounded, and therefore constitute grounded metal bodies as defined by Condition 2 above. They would have to be bonded to the down conductor if separation from the down conductor is less than the distance determined by the BBF, Condition 2. Condition 3 would not apply between the door frame and the down conductor with objects 1 through 4 in between, because all are grounded. However, the BBF, Condition 2, has to be applied between the down conductor and the doorframe. On explosives facilities where such objects do not need to be bonded, recommend they be marked or labeled "NBN" (No Bonding Needed) for future reference.

A3.6. Explosives Facility Bonding. The following supplements the NFPA 780 bonding requirements for explosives facilities defined in chapter 3.

A3.6.1. gives approximate bonding distances as defined by NFPA 780. Note that this chart does not cover Condition 2b(2). The terms h, Km, and n are defined in paragraph A3.3.1. To demonstrate the use of the chart, we will use the chart to solve the example in paragraph A3.3.1.
Figure A3.4. Bonding for Typical Air Force Structure.

Figure A3.5. Approximate Bonding Distances.

<table>
<thead>
<tr>
<th>h</th>
<th>K_m</th>
<th>1.0</th>
<th>1.5</th>
<th>2.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.05m</td>
<td>1</td>
<td>0.51m</td>
<td>0.34m</td>
<td>0.23m</td>
</tr>
<tr>
<td>6.1m</td>
<td>0.5</td>
<td>0.25m</td>
<td>0.17m</td>
<td>0.11m</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.016m</td>
<td>0.68m</td>
<td>0.46m</td>
</tr>
<tr>
<td>9.14m</td>
<td>0.5</td>
<td>0.51m</td>
<td>0.34m</td>
<td>0.23m</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.5m</td>
<td>1.02m</td>
<td>0.68m</td>
</tr>
<tr>
<td>12.2m</td>
<td>0.5</td>
<td>0.76m</td>
<td>0.51m</td>
<td>0.34m</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.03m</td>
<td>1.37m</td>
<td>0.91m</td>
</tr>
</tbody>
</table>

\[D = \frac{hK_m}{6n} \]

1. Find the height (h) (9.14 m) in the column labeled h.
2. Then select the row adjacent to the 9.14 m where K_m is 0.5, since any flashover would occur through the wall.
3. Since there is only one down conductor, n equals 1. Find the intersection of the row selected in step 2 and the column labeled 1.0. The value in the cell is 0.76m. Therefore, D is 0.76.
Also notice that the greatest bonding distance for objects not covered by 2b(2) inside a facility less than 12.2 meters in height is 1.016 meters (3 feet, 4 inches).

A3.6.2. Steel magazine doors inherently in physical contact with the metallic door frame do not need a separate bond if this contact measures one ohm or less. Install a bonding strap if this contact measures greater than one ohm. The frame must be inherently grounded through the rebar or bonded to a down conductor.

A3.6.3. Objects such as metal desks, large metal trash cans, and ground level floor grates do not need to be bonded unless required by NFPA 780.

A3.6.4. Fences and railroad tracks within 1.83 meters (6 feet) of a structure’s lightning protection system must be bonded to the structure grounding system.

A3.6.5. Blast valves must be inherently grounded through the rebar system or with a separate bonding strap.

A3.6.6. Metal bodies located within a steel framed structure that are inherently bonded to the structure through construction must be tested when the facility is new and the measurements recorded and kept with the other required measurements and observations. They do not need to be tested again unless there is reason to believe the bond has changed; e.g., corrosion or structural repair.

A3.7. Protective Aircraft Shelters (PASs). In PASs with interior steel arches, all grounded metal bodies within 0.305 meters (1 foot) of the steel arch must be bonded to the arch. In PASs without a steel arch, all grounded metal masses within 0.305 meters of a wall must be bonded to the nearest metallic electrical conduit if not already connected. Only those grounded metal bodies not inherently bonded (through metallic conduit or equipment grounding conductor) must be tested for continuity to the ground or conduit system. All metal doors must be grounded. Door hinges and door tracks are acceptable as a bonding strap if the doorframe or door track is grounded and there is less than 1 ohm between the door and ground. Additional requirements for PASs with WS3 vaults:

A3.7.1. Continuity between the steel arch and grounding system may be measured by ohming between the steel arch and any metallic electrical conduit. Two test points between different conduits and the arch are sufficient, if the test points are spaced on opposite walls and the conduit long. This is to ensure electrical continuity through the structural shell. If a maximum of 1 ohm is not achieved, a bonding strap must be installed.

A3.7.2. When testing continuity between the WS3 vault and steel arch, an acceptable test location is the vault lip or flange flush with the shelter floor. The vault does not have to be raised. Where there is no steel arch, test from a metallic electrical conduit on the PAS wall to the vault lip.
Attachment 4

LIGHTNING PROTECTION SYSTEMS (T-0)

A4.1. Minimum Requirements. Engineers assigned specific responsibilities for lightning protection should review the lightning protection system on each facility at least annually or after repair actions have been completed.

A4.1.1. Air terminals must extend at least 0.25 meters (10 inches) above the object to be protected. NOTE: When replacing air terminals with terminals of a different length, required spacing around the perimeter must be reconfirmed and the zone of protection verified.

A4.1.2. Each air terminal (except pole- or tower-mounted terminals as exempted in NFPA 780) must be connected to at least two paths to ground. Note that for earth-covered igloos, these paths may be covered with soil.

A4.1.3. Each building with an integral protection system must have a minimum of two down conductors, one each at opposite corners (one each on all corners is preferred).

A4.1.4. Down conductors must present the least impedance to ground.

A4.1.5. Down conductors must not have sharp bends or loops. All bends must have a radius of 203 millimeters (8 inches) or greater and measure not less than 90 degrees from the inside of the bend. The 203-millimeter radius does not apply to "T" or "Y" splices. These splices, however, can be used only for the purpose intended.

A4.1.6. If the structure has metallic columns, these columns may serve as down conductors. Columns must not average over 18.3 meters (60 feet) apart.

A4.1.7. The average distance between down conductors must not exceed 30.5 meters (100 feet).

A4.1.8. Any down conductors subject to mechanical damage or displacement must be protected with a protective molding or covering for a minimum of 1.83 meters (6 feet) above grade. If a down conductor runs through a ferrous metal tube or pipe (usually for mechanical protection), the conductor must be bonded to both ends of the tube.

A4.1.9. Do not paint down conductor connectors unless they are the high-compression or exothermic (or welded) type. Conductors on roofs must be bare.

A4.1.10. Each down conductor must be connected, at its base, to a grounding electrode.

A4.1.11. Ground rods must be at least 3.05 meters (10 feet) long, made of not less than 0.75 inch diameter pipe or equivalent solid rod made of copper or copper clad steel. Stainless steel ground rods may not be used. Ground rods must be at least 0.91 meters (3 feet) from the building walls or footings and must penetrate 3.05 meters into soil. Ground rods with tops at least 0.31 meters (1 foot) below grade are recommended.

A4.1.12. Interior metal parts of a facility close to a down conductor may need to be bonded to that down conductor. See NFPA 780 and Attachment 3.

A4.1.13. Bonding materials must be compatible with the metallic mass and down conductor.

A4.1.14. On new facilities, down conductors entering soil with less than 10,000 ohm centimeters resistivity must be protected against corrosion by a protective covering beginning
at point 0.91 meters (3 feet) above grade and extending for its entire length below grade (to a ground rod or ground loop conductor).

A4.1.15. Ground loop conductors must not be less than AWG No. 1/0 copper.

A4.2.1. A mast-type lightning protection system uses masts located remote from the facility. The mast must be high enough to enclose the facility in the zone of protection according to NFPA 780. Separate each mast from any part of the facility by at least the bonding distance specified in Chapter 3 of NFPA 780, but not less than 1.83 meters (6 feet). Refer to Figure A4.1.

A4.2.2. If a single mast will not protect a facility adequately, install multiple masts or an overhead wire system. An overhead wire lightning protection system consists of grounded, elevated, horizontal metallic wires stretched between masts surrounding the facility. Each wire must be a continuous run of at least AWG No. 6 copper, or equivalent. Suspend each wire above the protected facility, and connect them to ground rods at each mast or pole. Interconnect all ground rods with a ground loop conductor. NFPA 780 Table 4.1.1.1.1 and 4.1.1.1.2, specify the minimum separation between the overhead wire and the protected facility, which must be at least equal to the bonding distance or side flash distance. A minimum of 1.83 meters (6 feet) is recommended. Supporting masts must be separated by the side flash distance, but no less than 1.83 meters.

Figure A4.1. Air Terminals on Masts (Typical).

A4.2.3. An air terminal extending above the top of the pole must be securely mounted to the top of the wooden mast and connected to the grounding system. An overhead ground wire or a down conductor, extending above or across the top of the pole, may serve as the air terminal. Each nonmetallic mast must have two down conductors. Metal masts do not require air terminals and down conductors, but must have two connections to the grounding system.
Attachment 5

MAINTENANCE GUIDELINES FOR EXPLOSIVES FACILITIES (T-0)

A5.1. Has each facility been inspected to determine the type of protection system installed? Is the system integrally mounted or separately mounted (mast or overhead wire)?

A5.2. Are personnel from the testing agency familiar with lightning protection systems?

A5.3. Are all test agency personnel who could or do perform the tests or inspections familiar with this instruction?

A5.4. Are static grounding systems installed as separate subsystems? Are they connected only to a lightning protection system down conductor (when within side flash), or to a ground loop conductor? Are contact points free of corrosion, paint, grease, oil, or other agents that prevent good bonding?

A5.5. Are both the user and testing agencies aware of all facilities that have been identified as housing or being used to conduct hazardous operations? Are all familiar with any special test/inspection requirements?

A5.6. Are tests/inspections accomplished at the required frequency?

A5.7. Are tests conducted with the proper test instruments?

A5.8. Are personnel conducting tests familiar with the location of test points and the relationship between various components of the system being tested?

A5.9. Are visual inspections being performed as required?

A5.10. Are repair actions taken to render the facility safe?

A5.11. After repair actions have been completed, are electrical tests accomplished to ensure the system integrity?
A6.1. **Grounding System Resistance Test.** Use the procedure described here or the procedure recommended by the test instrument manufacturer. Figure A6.1 illustrates auxiliary probe locations for fall-of-potential ground resistance tests. Where possible, conduct this test at the corner of the building opposite the electrical service entrance. Exercise caution: underground metallic piping may influence readings. Position probes as far as possible from the grounding system under test. You may temporarily disconnect electrical service from other ground connections; however, make sure you reconnect the ground or a shock hazard will result. Connect the appropriate lead of a fall-of-potential meter to the ground rod at the test site. Place the potential reference probe at a distance greater than one-half the diagonal of the building under test, but not less than 7.6 meters (25 feet). Place the current reference probe 90 degrees from the potential reference probe (in a direction away from the facility under test) and the ground rod under test, and at a distance greater than one half of the building diagonal, but not less than 7.6 meters from the potential reference probe. Note that the distances between probes are equal. For buildings without a ground loop conductor, perform this test at each ground rod. Resistance should be less than 25 ohms (10 ohms for communications facilities). Periodic tests should be made at approximately the same time each year to minimize confusion resulting from seasonal changes.

Figure A6.1. Auxiliary Probe Locations for Fall-of-Potential Ground Resistance Test.

A6.2. **Resistance Test for Above-Ground Petroleum (POL) Tanks.** The method described in paragraph A6.1 is appropriate for medium to small grounding systems. Figure A6.2 illustrates how to measure resistance to earth of larger, more complex systems such as a large POL tank or a substation. In areas where the soil resistivity is relatively high, a higher voltage supply may be necessary. Local cathodic protection technicians can usually furnish the material for the test.
Make sure the tank is isolated from the utility systems by dielectric flanges. Also be sure the cathodic protection systems are disconnected.

Figure A6.2. Measuring Resistance to Earth of Large POL Tank.

A6.2.1. Install a temporary ground bed of three or four 1.52-meter (5-foot) ground rods at a distance equal to five tank diameters. Place a copper-copper sulfate half cell on the opposite side of the tank. Place it at a distance equal to five tank diameters and along an imaginary straight line through the center of the tank. Make sure it has good contact with earth.

A6.2.2. Between the temporary ground bed and tank, install a 12-volt common vehicle battery and a dc ammeter (multimeter with 1-amp scale may be used). Install a high impedance (10 megohm or greater) dc voltmeter with a 1-volt scale between the half cell and tank.

A6.2.3. With the battery disconnected, record the voltage reading at the voltmeter.

A6.2.4. Connect the battery and record the current at the ammeter and voltage at the voltmeter. Read voltage immediately after connecting the battery. Current output must be sufficient to effect a minimum 0.05 volt potential shift in the half cell reading.

A6.2.5. Calculate resistance of the tank to earth in ohms by dividing the potential change in volts, DV, by the current in amps; or \(R = \frac{DV}{I} \). For large tanks, typical values would be 0.040 amps of current and a voltage change of 0.2 V.

A6.3. Resistance Test for Large Objects. This procedure is an alternative to paragraph A6.2 for measuring the resistance to earth of large metallic objects or grids. Be sure to isolate the tank (or object) from the utility system and turn off any cathodic protection system.

A6.3.1. Install a 2.44-meter (8-foot) ground rod at a distance of five diameters from the tank (or object being tested). Measure the resistance of this rod to ground using a fall-of-potential meter. This is the value of Rgr.

A6.3.2. Next, hook up the circuit as shown in Figure A6.3. The resistance of the tank (or object) to earth is determined by \(R_o = \frac{V}{A} - R_{gr} \), where V is the reading from the voltmeter and A is the reading from the ammeter. The ammeter typically reads between 0.1 amp and 2 amps with a 12-volt source.
A6.3.3. If soil resistivity is very high, increase the voltage until enough amps flow to be measurable.

Figure A6.3. Alternate Method of Measuring Resistance to Earth of Large Object.

![Diagram of measuring ground rod resistance](image)

\[V = \text{VOLTMETER} \]
\[A = \text{AMFMETER} \]
\[R_0 = V/A \times R_{gr} \]

A6.4. Continuity Test/Check for Separately Mounted Lightning Protection System (Mast and Overhead Shield Wire). Figure A6.4 illustrates a mast and overhead shield wire protection system. To test the continuity of a mast, connect one lead of an ohmmeter to the top of the pole. Connect the other lead to the point where the conductor connects to the ground system, at the ground level. If the resistance is greater than 1 ohm, check for deficiencies and repair. For mast systems where the masts are metallic of seamless construction of a height to provide adequate protection, the continuity test can be conducted from the base of the mast. A seamless mast has all horizontal welds, completed 360 degrees circumferentially. For a system using overhead shield wire, visually inspect overhead shield wires with binoculars. If the system uses mechanical connectors, a continuity test must be conducted from the overhead shield wire to the point where the conductor connects to the ground system, at the ground level (the base of each mast or guy wire(s) when the guy wire(s) is used as the down conductor). If the resistance is greater than 1 ohm, check for deficiencies and repair. For systems which use only exothermic welds or high compression crimps, a visual inspection may used to verify shield wire and down conductor continuity. The visual inspection may be conducted from ground level using binoculars.

A6.5. Continuity Test/Check for Integrally Mounted Lightning Protection Systems. Perform this test by firmly attaching one lead of an ohmmeter to a corner ground rod. Next, connect the other lead consecutively to each of the air terminals located at the corners of
the building, and the air terminal (or metallic body) with the highest elevation. Repeat the test from the ground rod located at the opposite corner of the building. For explosive facilities, test the continuity to each air terminal. If the continuity of the system is good, the resistance value at any given test point should be about the same. Investigate any reading over 3 ohms. \textbf{NOTE:} Tests can also be performed from ground rod to nearest corner air terminal and from that corner terminal to the other corner terminals.

\textbf{A6.6. Testing for Static Bus Bars.} Test static bus bars by connecting one lead of a digital ohmmeter to a ground rod of the facility grounding system. Connect the other lead (in turn) to all the free ends of the bus bar. Bolted connections between bus bar sections are not considered free ends. Figure A6.5 shows how a typical static bus bar test is performed. Investigate any reading more than 3 ohms and correct it. Perform a visual inspection to ensure materials and connections are in good condition.

\textbf{Figure A6.4. Mast and Overhead Shield Wire Protection System.}

\textbf{A6.7. Conductive Floor Tests.} Before using test instruments, be sure the room is free of exposed explosives. To determine floor resistance, measure between two electrodes placed 0.91 meters (3 feet) apart anywhere on the floor. Each electrode must weigh 2.27 kilograms (5 pounds) and have a dry, flat circular surface area 63.5 millimeters (2.5 inches) in diameter. The resistance between an electrode placed anywhere on the floor and a ground connection must not be less than 25,000 ohms. For more information see IEEE Std 142 and NFPA 99.
Figure A6.5. Testing Static Bus Bars in Typical Explosives Area.