This page contains document links to Construction Criteria Base

Heating, Ventilating, Air-Conditioning, and Refrigerating (HVAC&R) Engineering

by Charles E. Gulledge III, P.E., MAI, Chair ASHRAE Technical Committee 7.1 - Integrated Building Design, Senior Mechanical Engineer - AC Corporation; and Dennis Knight, P.E., LEED AP, Secretary ASHRAE Technical Committee 7.1 - Integrated Building Design, Director of Technical Support - Liollio Architecture for the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)

Last updated: 10-22-2014

Introduction

The modern day definition of air-conditioning was created in the early 20th century based on the vision and works of Hermann Rietschel, Alfred Wolff, Stuart Cramer, and Willis Carrier. Cramer, a textile engineer in North Carolina, is credited with coining the phrase "air-conditioning" in 1906. In 1908, G.B. Wilson developed the first holistic definition of what air-conditioning encompasses.

The Original Definition of Air-Conditioning

  • To maintain a suitable degree of humidity in all seasons and in all parts of a building
  • To free the air from excessive humidity during certain seasons
  • To supply a constant and adequate supply of ventilation
  • To efficiently wash and free the air from all micro-organisms, effluvias, dust, soot, and other foreign bodies
  • To efficiently cool the air of the rooms during certain seasons
  • To either heat the rooms in winter or to help heat them
  • To combine all the above desiderata in an apparatus that will not be commercially prohibitive in first cost or cost of maintenance

(Source: Nagengast, B., 1999, "Early Twentieth Century Air-Conditioning Engineering", ASHRAE Journal, March (p.55)

Though he did not actually invent air-conditioning nor did he take the first documented scientific approach to applying it, Willis Carrier is credited with integrating the scientific method, engineering, and business of this developing technology and creating the industry we know today as air-conditioning.

Description

Today's HVAC&R engineer, or mechanical engineer of record (MER), continues to be a steward of the basic discipline issues identified by Mr. Wilson nearly 100 years ago. Roles have expanded, though, to address more modern quality of life issues. ASHRAE offers the current vision of the MER's stewardship responsibilities: to improve the quality of life by helping keep indoor environments comfortable and productive; by helping to deliver healthy food to consumers; and by helping to preserve the outdoor environment.

As part of a holistic controlled environment design solution, the MER is responsible for addressing seven major processes. These are:

  1. Heating—the addition of thermal energy to maintain space or process conditions in response to thermal heat loss
  2. Cooling—the removal of thermal energy to maintain space or process conditions in response to thermal heat gain
  3. Humidifying—the addition of water vapor to maintain space or process moisture content
  4. Dehumidifying—the removal of water vapor to maintain space or process moisture content
  5. Cleaning—the process of removing particulate and bio-contaminants from the conditioned space.
  6. Ventilating—the process of providing suitable quantities of fresh outside air for maintaining air quality and building pressurization.
  7. Effectiveness—the process of achieving the desired thermal energy transfer, humidity control, filtration, and delivery of ventilation air to the breathing zone of the occupied space in accordance with required needs.

It is important for the MER to be involved early in the project, even as early as the programming stage, so that mechanical system space issues and facility energy budgets can be evaluated and integrated into the design process before building construction elements, configurations, and orientations are finalized (see also WBDG High-Performance HVAC). A few critical issues that need to be considered early are:

  • Financial Focus: Will the project be a code minimum type facility or will total ownership cost perspectives be considered that balance capital first costs against long-term ownership and operating costs?
  • Owner Sophistication: The MER needs to understand the abilities of the owner and keep these in mind as mechanical system architecture issues are considered. The best of design solutions aren't much good if operators do not understand how to correctly operate or control the equipment.
  • Operations and Maintenance: No matter what level of system complexity is applied, it is imperative that suitable space be made available for equipment without compromising performance or maintenance access. A good MER will understand the requirements published in equipment installation manuals and focus on providing prescribed minimum service and operating considerations in the planning of a facility layout.

Before any equipment selections can be finalized, the MER will need to perform a thermal load calculation for the developing facility based on internal and external influencing factors. In many cases, this activity will be expanded to include analysis of comprehensive energy models. These models will foster dynamic integration opportunities whereby the design team and owner can evaluate the impacts of trade-offs between facility construction elements, mechanical system alternatives, and available operating efficiencies. Load calculations can be utilized for any or all of the following design activities:

  1. Defining the basic load dynamics
  2. Evaluating solution alternatives via life-cycle analysis
  3. Optimizing system performance
  4. Selecting final HVAC equipment
  5. Establishing energy budgets for owners
  6. Verification of proposed equipment performance
  7. Commissioning Design Intent for seasonal comparison

The MER will be responsible for securing/developing the following fundamental information from the Owner and design team members:

  • Basic Load Calculations:
    • Establish summer/winter design weather conditions paying particularly close attention to regional weather issues and impact on humidification/dehumidification considerations.
    • All elements of the building envelope must be identified so that thermal energy loss/gain can be determined. Reference should be made to ASHRAE Standard 90.1 for regionally documented envelope construction minimum thermal quality considerations.
      • Orientation of walls and roofs need to be defined so that sun angle impacts can be evaluated.
      • The composite construction of all walls, roofs, and floors needs to be defined so that thermal transfer calculations can be performed. This information will also be useful when a dew point analysis is performed on the envelope.
      • Thermal mass and color of walls and roofs need to be defined so that thermal time lags and radiation absorption can be evaluated.
      • Fenestration U-values and solar heat gain coefficients need to be defined.
      • External/internal shading provisions need to be defined that may impact fenestration heat gain.
    • Lighting:
      • Lighting densities and ballast loss factors need to be mapped per individual space. Maximum densities are identified for individual space types in ASHRAE Standard 90.1.
      • Opportunities to capture natural light (Daylighting) and apply occupancy sensing techniques to reduce light heat gain need to be explored.
    • Basic internal sensible heat gain allowances for receptacle loads need to be established.
    • Miscellaneous sensible and latent heat gain values need to be identified for special circumstances.
    • People contributions:
      • The total number of people and the occupancy usage profiles need to be established.
      • The activity levels of people need to be identified.
    • Ventilation:
      • For a given space, the area factor and people factor ventilation rate components need to be calculated per ASHRAE Standard 62.1.
      • Depending on HVAC system architecture employed, critical space calculations may need to be performed to adjust ventilation quantities to ensure adequate outside air is being provided to occupied spaces during all system fluctuations.
      • Calculate all building exhaust requirements and compare to minimum required outside air ventilation rates. The overall impact of building pressurization dynamics must be evaluated for the facility, for seasonal conditions, and for regional locations. The MER must fully understand how moisture and thermal gradients work with the building envelope construction and what influence infiltration/exfiltration has on condensation potential.
    • Basic system zoning:
      • Identify spaces and zones.
      • Establish summer/winter design temperature set-point conditions and dead-band ranges per thermal comfort recommendations of ASHRAE Standard 55.
  • Energy Modeling:
    • Establish realistic average weather profiles for project location.
    • Define realistic 24-hour usage profiles for the entire calendar year taking into account workdays, weekends, holidays, etc.
    • Obtain current rate structures from utilities.
    • Define accurate equipment power consumption paying particular attention to part load efficiencies.
  • Life-Cycle Analysis:
    • Define capital cost impacts of equipment and system alternatives.
    • Determine client applicable time value of money evaluation parameters.
    • Determine accurate maintenance costs for equipment and system alternatives.

Integrated Design Process (See also WBDG High-Performance HVAC)

Once the facility thermal issues are identified, the MER will be faced with application decisions to find appropriate, constructible, controllable, affordable, and maintainable HVAC&R solutions. These solutions must be integrated and coordinated with parallel design and planning activities of fellow design team members. While not totally encompassing, the following discipline considerations need fundamental attention:

Architectural Interaction:

Impacts By Impacts To
  • Equipment room locations, accessibility, and size
  • Location and appearance of air distribution devices
  • Floor to floor height, depth of structure, ceiling height, and available utility space in ceiling cavity
  • Component aggregation and location of building envelope elements
  • Location of Life Safety features such as fire and smoke rated construction and the impacts on HVAC constructability
  • Location and construction of noise sensitive areas
  • Selection of interior finishes and VOC impacts.
  • Location of equipment
  • Orientation of the building

Structural Engineering Interaction:

Impacts By Impacts To
  • Type of construction: steel, concrete, wood, etc.
  • Foundation design
  • Fireproofing techniques
  • Seismic criteria
  • Location, weights, and support/attachment of equipment

Civil Engineering Interaction:

Impacts By Impacts To
  • Location of site utilities
  • Siting and landscaping impacts on thermal loads and noise trespass
  • Size and location of utility connections

Electrical Engineering Interaction:

Impacts By Impacts To
  • Size of available power service
  • Layout of design
  • Gen-set ventilation, heat removal, and fuel support requirements
  • Location of electrical infrastructure: switchboards, panels, feeders, etc.
  • Equipment power requirements
  • Coordination of power hook-up and disconnecting means
  • Coordination of Fire Alarm shut-down and smoke detectors
  • Location of duct, pipe, and air distribution

Plumbing Engineering Interaction:

Impacts By Impacts To
  • Type and capacity of heat generation plant for hot water heating
  • Location of plumbing infrastructure: equipment, piping, etc.
  • Make-up water requirements and backflow protection
  • Condensate drainage disposal requirements
  • Location of duct, pipe, and air distribution

Fire Protection Engineering Interaction:

Impacts By Impacts To
  • Fire pump ventilation, heat removal, and fuel support requirements
  • Location of sprinkler and standpipe infrastructure: equipment, piping, heads, etc.
  • Location of duct, pipe, and air distribution

Emerging Issues

HVAC systems have increased in complexity over the years. While the fundamentals track to the basics developed by the pioneers in the early 20th century, the MER has many more collateral design issues and liability concerns to consider today.

A. Energy

The energy crisis of the 1970s initiated a new focus on energy efficiency and shift to part-load design dynamics. Energy wasteful solutions have become obsolete. Designing systems with a peak load only perspective has become obsolete. Managing peak loads to reduce peak energy demand has become essential. The MER must understand the impacts of equipment part-load performance and overall, integrated system performance.

Energy codes and standards have aggressively forced equipment manufacturers to improve the efficiency of equipment and integrated systems. Renewable energy solutions have become, for some applications, economically feasible considerations. Owners have become total ownership cost savvy and understand the bottom line impact of energy budgets and energy consumption profiles. Dependence on fossil fuel based energy solutions is becoming a concern. The MER must recognize the impact of the energy issue and respond to energy efficient and renewable solutions.

B. Energy Modeling

Energy modeling is the process of using scientific methods and analytical tools to estimate the energy consumption patterns of a given facility, constructed of given materials, located in a given climate zone and operated according to given schedules. These tools and methods range from simple hand calculations and spreadsheets to the most sophisticated software packages designed to consider numerous building configurations, denote multiple zones, model multiple systems with many varied hours of operation, and integrate with/to Building Information Models.

Energy modeling should be utilized to help integrate and optimize a building's energy consuming systems' performance over the expected life cycle of the facility. Those systems include, but are not necessarily limited to, the building envelope, HVAC&R systems, area lighting, water heating, pumping, elevators and personnel transportation devices, process and plug type power loads. Plug type loads include items such as task lights, computers, space heaters, appliances, TVs, etc.

Energy modeling may also be required if it becomes necessary to value engineer a project after the design phase is complete. Simple substitutions of less costly materials, products, equipment, or systems at this stage of a highly integrated building design may have serious and profound negative effects on the building's future energy and environmental performance if not properly analyzed prior to acceptance.

During the programming and/or schematic design phases the HVAC&R engineer should be prepared to assist the architectural design professional and Owner in optimizing a building's envelope and orientation design long before HVAC&R system selections and equipment alternatives are considered. Simple shoe box type models considering the buildings basic mass and scale may be quickly setup at this phase of design and zones with similar thermal characteristics may be assigned within the building. Consideration should be given to the building envelope materials (exterior wall cladding, wall insulation, roof materials and insulation, fenestration materials), orientation, cost of materials, and local climate. During this phase, a baseline model should be created with which to compare any alternative or proposed designs. The baseline model may be a code required minimum building, a building similar to one that the Owner is moving out of, or a building similar to one that the Owner typically constructs.

C. Moisture Control

Moisture control has become a significant liability issue for the MER. A very negative trend has been developing in the industry recently whereby buildings are making occupants sick due to growth of mold. There is no one reason to explain why such a proliferation of mold contamination cases has blossomed, but there are some fundamental factors that the MER must keep in perspective while designing a facility, such as:

  • All water generation sources inside the facility need to be understood and minimized.
  • Construction of the building envelope must be properly applied to the climate zone in question. The relationship of vapor retarders and air barriers needs to be correctly understood.
  • All possible relative building air pressure relationships (internal and external) need to be understood to avoid bringing undesirable, untreated moisture into the facility.

D. Ventilation and Dedicated Outside Air Systems (DOAS)

Application of ASHRAE Standard 62.1 may create some difficult design challenges for the MER. The correct outside air ventilation requirements for a given space/zone/facility layout may very easily exceed the summation of the simple people and area factor prescribed ventilation rates when ventilation effectiveness is taken into account. When multiple spaces are included into the same zone, calculations must be performed to identify the correct ventilation rate that ensures adequate distribution to all spaces and zones for all operating conditions. Depending on the zoning configuration, the multiple space calculation corrections can increase the minimum required outside air quantity.

The utilization of excessive outside air will have a significant impact on cooling/heating loads and the sizing/selection of equipment and plant solutions. Additionally, depending on the climate zone in question, an undesirable high quantity of moisture could be coming into the building. As latent cooling requirements increase, sensible heat ratios start to decrease. As sensible heat ratios drop, the proper application of equipment to maintain space temperature and humidity becomes problematic.

The increased outside air quantities also impact the minimum setting on variable volume terminal units. It is conceivable that the terminal unit minimums could be so high that the need for constant reheat may be required and the benefit of having the all air VAV system becomes an energy liability.

DOAS systems provide a creative solution that addresses multiple issues. For example:

  • The DOAS approach allows the outside air latent load to be decoupled from the space sensible load. The outside air path can be conditioned based on dew point control to deliver neutral or cold air to a parallel space sensible cooling system. Space temperature can then independently be controlled by the sensible cooling system.
  • The DOAS air path is 100% outside air, not mixed, and can be delivered at the prescribed quantity directly to the space based on the people and area factor ventilation rates. Multiple space calculations do not need to be considered.
  • Since no mixing is involved, ventilation rate delivery to the space/zone can actually be verified and continuously monitored.
  • The new requirement in ASHRAE Standard 62.1 that requires occupied spaces be held below 65% relative humidity now becomes achievable at part-load cooling conditions.
  • The problems encountered with scroll compressor DX VAV units cycling off when leaving air temperature is satisfied and raw outside air is pulled across a de-active coil, are minimized. Additionally, the phenomena of moisture on the coil and in the drain pan being re-evaporated back into the unconditioned air path can be eliminated.

E. Building Information Modeling (BIM)

BIM is the concept of using truly intelligent 3D modeling software to create optimized, efficient, and environmentally friendly building designs. The concept has been around since the advent of the first computer-aided drafting (CAD) system. However, the industry is still a decade or more away from having commercially available software that integrates the needs of every design and construction discipline as well as the ownership, operation, and maintenance needs of the building owner throughout the useful life of a facility.

For example, a complete BIM solution would allow the Architect to create an intelligent 3D model of a building, its site and location. That model would include the aesthetic, physical, and thermal properties of each component as well as specification and cost data. Then the Civil Engineer would use a software interface to allow the design of the site and analysis of all utilities and drainage systems involved. Similarly, the Structural Engineer's software would allow him to use the characteristics from the Architect's model to size structural members and properly reinforce the structure based on each component's physical characteristics and the project's geographic location. The MER would interface with the Architect's model to seamlessly generate Energy Models and Life-Cycle Cost Analysis of the building's envelope and energy consuming systems, and so on for all other disciplines involved. Finally, after all design is complete, the original modeling software would compile the data from each discipline and generate a BIM and a set of digital Construction Documents for use to construct the facility.

Use of the BIM would continue into the bidding phase by interface with a contractor's cost estimating, scheduling, and project management software and manufacturers' material, fabrication, and cost databases to generate optimized cost estimates and construction schedules. During construction, the model would be continually updated to as-built conditions including integration of manufacturers' complete operations and maintenance data and instructions. At completion of construction the Building Information Model would be turned over to the Owner for interface with facility management software to optimize the operation and maintenance of the facility for the duration of its life.

F. Commissioning

See Building Commissioning.

G. Performance-Based Building Codes

See Fire Protection Engineering in the Design Disciplines section for a discussion of Performance-Based Building Codes.

H. Acoustics

The fundamentals of equipment sound power levels, transmission paths, and resulting sound pressure readings go beyond the application and understanding of basic thermodynamics. The MER should have sufficient understanding of acoustics to be able to benchmark the sound quality of the equipment applied as the design solution and attenuate sound paths accordingly to the acoustical criteria for the occupied spaces.

While acoustical design techniques really haven't changed, the issuance of ANSI 12.60-2002 has changed the integrated design dynamic. A standard of care document is now in print that details sound quality features for school environments. Successful compliance with this new standard will require a concentrated coordination effort between mechanical and general construction interest. All sound transmission paths (discharge, radiated, breakout, etc.) must be analyzed to show anticipated space sound pressure based on equipment selection sound power source energy. Equipment locations, equipment operating points, transmission path construction, end room reflectance, and resulting sound pressure are all variables that the MER needs to understand and manipulate.

I. High Density Data Servers

Facilities are becoming "smarter" and fully networked. This high-tech trend has created a new challenge for the MER. Communication and data storage servers are adding significant sensible cooling loads to the indoor environment. As server technology improves to provide better speed and capacity, the sensible heat rejection load component keeps rising. Recent studies show the heat rejection densities for server equipment doubling, maybe even tripling, in just the next five year window. Rarely has the MER been faced with a commercial design challenge wherein the HVAC infrastructure may be obsolete so quickly. High density loads, hot/cold aisles, and phased capacity methodology are new issues that the MER will have to address. See Information Technologies Engineering.

J. Ozone Depletion

Refrigerants are the fundamental substances used to transfer heat during the mechanical cooling process. Chloroflurocarbon (CFC) compounds such as R-11 and R-12 have been used for decades in refrigeration cycles. Beyond the HVAC&R industry, these same refrigerants have been used as blowing agents in the manufacturing of foams and insulations.

Evidence has linked the reduction of stratospheric ozone concentrations to the release of halogenated refrigerant vapor into the atmosphere. As refrigerant concentrations are hit by the sun's ultraviolet light, the refrigerant molecules break down and release the chlorine atoms into the atmosphere. Once liberated, the chlorine atoms react with very cold polar stratospheric clouds containing water vapor and nitric acid to destroy the ozone concentration. As the ozone layer is depleted, the sun's ultraviolet radiation (UV-B) becomes less filtered and reaches the earth's surface at higher concentrations.

Fortunately, the science of this destructive phenomenon has been identified and steps have been implemented globally to correct the negative impact to the atmosphere. Guidelines established in the Montreal Protocol (adopted in 1987) and subsequent amendments, have set timetables for replacement and conversion to alternative refrigerants for developed and developing countries. The CFC refrigerants have been replaced with hydrochloroflourocarbons (HCFC) and hydroflourocarbons (HFC) alternatives. Natural refrigerants, such as ammonia and carbon dioxide, which are not ozone depleting substances, are seeing use in certain applications. The MER must understand the current phase-out timetables, the dynamics of pending amendments, the science of the available alternatives, the impacts to system design, and the impact on performance and energy efficiency. Consider the following:

  • Renovation work may encounter HVAC systems with out-of-production CFC refrigerants. Removal, cleaning, and disposal/reclaim of the refrigerant must follow strict EPA guides to prevent release of the refrigerant to atmosphere. ASHRAE Standard 147 includes criteria for reducing the release of halogenated refrigerants from refrigerating and air-conditioning equipment and systems.
  • HCFC refrigerants are an interim solution and have projected phase-out dates for new equipment application. Will the refrigerant be available for the life of the equipment? Replacements may or may not be as efficient. These dynamics need to be addressed when considering the overall life of the facility and the total ownership cost impact.
  • How will alternative refrigerants impact facility design and operation? Toxicity and flammability issues now become critical, as do equipment room locations and safety design.
  • The thermodynamic characteristics of alternatives may result in less efficient cooling processes. What is the correct balance of ozone depletion potential of the refrigerant being used versus the global warming potential of energy inefficiency and release of carbon dioxide into the atmosphere?

(Source: Ozone Depleting Substances - Position Document, ASHRAE, 2001)

K. Climate Change

The increased accumulation of greenhouse gases (GHG) in the atmosphere and the increase in average global temperatures is creating a worldwide concern. The adoption of the Kyoto Protocol in 1997 initiated a commitment to reduce emission of global warming gases.

Approximately 1/3 of the solar radiation reaching the earth is reflected back into space by clouds, small particles in the atmosphere, and the earth's surface. The remaining energy is absorbed by the earth's surface and gases in the atmosphere. A certain level of GHG, such as carbon dioxide and water vapor, maintain the earth's average temperature approximately 60°F higher than it would be without the gases being present. The problem occurs when increased concentrations of GHG increase the energy trapping capabilities of the lower region of the atmosphere. Such a scenario causes the surface temperatures to increase.

Alarming data reported by the Intergovernmental Panel on Climate Change in 1996 indicates that the level of carbon dioxide in the atmosphere has increased by approximately 30% over the last 200 years, and is increasing at a rate of 0.4% per year. Methane has increased by approximately 145% and is increasing at a rate of 0.6% per year. Nitrous Oxide has increased by approximately 15% and is increasing at a rate of 0.25% per year.

The continued burning of fossil fuels will continue to negatively impact the concentrations of GHG in the atmosphere. The design of buildings directly and indirectly impacts the release of GHG. The MER must address the following issues:

  • The release of mechanical system refrigerants must be avoided.
  • Buildings must be evaluated to find the lowest, viable energy consumption solution.
  • Equipment should be regularly checked to make sure systems are operating as intended and haven't become energy wasteful through lack of attention.
  • End user behaviors need to be altered to think globally.

(Source: Climate Change - Position Document, ASHRAE, 2004)

L. Indoor Air Quality (IAQ)

IAQ is a broad issue that requires a total team stewardship; it is not just an HVAC&R issue. Addressing IAQ issues requires a holistic, integrated response from the owner, the entire design team, and the operation/maintenance team. Occupant discomfort and building related illness are frequent complaints that owners must respond to. Discomfort factors can include: temperature, humidity, drafts, indoor pollutants, biological agents, and non-biological particles and fibers. Building related illnesses can include hypersensitivity, pneumonitis, and Legionnaire's disease. Common health complaints can include eye/nose/throat irritation, headaches, fatigue and lethargy, upper respiratory symptoms, and skin irritation and rashes. See Indoor Air Quality and Mold Prevention of the Building Envelope.

The MER should be cognizant of the following issues:

  • Volatile Organic Compounds (VOC) pose a source challenge based on the variety of source opportunities and possible chemical introductions to the building. Sources can include: construction materials, furnishings, cleaning products, copiers/printers, environmental tobacco smoke, people, personal hygiene products, air fresheners, and outdoor air. Consideration should be given to elimination, substitution, or containment of VOC generation sources.
  • Effective temperature and humidity control are achievable with the application of appropriate systems, effective air distribution, and proper control sequences. Humidity levels can negatively impact mucous membranes (too low) and upper respiratory tracts (too high). The MER should also consider that high humidity levels support the growth of mold and bacteria. An interesting new provision in ASHRAE Standard 62.1 is the addition of a maximum humidity level of 65% for occupied spaces.
  • The design of air systems must factor in the possible spread of airborne infectious agents, such as viruses and bacteria, generated by the occupants inside the building. As part of an appropriate risk management analysis, infrastructure solutions such as extent of filtration, UV light treatment, ventilation effectiveness, air changes, and building pressure control need to be investigated.
  • The building or systems within it may be sources of infectious agents such as fungus or bacteria. These sources can contribute to significant invasive diseases such as aspergillosis, legionellosis, and histoplasmososis. Minimizing the introduction of moisture into the building or ventilation system is critical to the mitigation of these deadly diseases.
  • The growth and support of non-infectious biological agents (fungus, bacteria, dander, and allergens) needs to be minimized. Locations of outside air ducts need to be optimized with site dynamics. Sources of moisture generation and intrusion need to be eliminated. Maintaining filtration and proper operation of equipment become critical factors.
  • Non-biological particles must be considered. Sources include the quality of the outside air available, tobacco smoke generation, combustion products, process related dust/fume generation, and material generated particles. Construction activities can be a significant source of fine and large particles. Early occupancy of new construction can present a liability to the owner. Protection of buildings under renovation becomes a critical exercise.
  • Inorganic gases such as carbon monoxide, nitrogen oxides, ozone, and radon can all have significant impact on occupants. These gases can be generated internally from smoking or combustion processes, operation of copiers and printers, operation of air cleaners, and poorly vented combustion equipment. Gases can also be introduced from the exterior via poor outdoor ventilation air, or in the case of radon, drawn up through the soil beneath and around the building.
  • Individual susceptibility, the "human factor", can vary from person to person. Factors such as allergic sensitivity, prior exposure, stress, and gender all play a role in how individuals react to and are impacted by IAQ issues.

(Source: Indoor Air Quality - Position Document, ASHRAE, 2005)

M. Sustainable/Green Building Design

Leadership in Energy and Environmental Design (LEED) is no longer a design and construction industry buzzword, catch phrase, or fad. As of fall 2005, there were over 21,000 LEED Accredited Professionals, 2,100 LEED registered projects, and almost 300 LEED certified projects located in 50 states and 14 countries encompassing more than 300 million gross square feet of buildings.

LEED is a Green Building energy and environmental performance rating system conceived by the United States Green Building Council (USGBC) in 1991 and formally introduced to the design and construction industries in 1993. Currently there are over 5,500 members of the USGBC. Members include owners, manufacturers, universities, design professionals, and local/state/federal agencies. The USGBC has partnered with the AIA and ASHRAE along with other organizations to help refine current rating systems and develop future rating systems that are truly consensus based.

The LEED System is not a code or standard. It is rather a voluntary method by which building owners may demonstrate their commitment to energy efficient and environmentally friendly building design, construction, operations, and maintenance practices that are better than minimum code requirements. The Green Building Initiative has a similar rating program called Green Globes. Additionally, many state and local government agencies have regionally customized rating systems that outline high-performance building roadmaps.

A question often asked by clients is: What is the cost associated with designing and building high-performance green buildings? For federal building applications see the GSA LEED® Cost Study and Applications Guide. Although the first cost of designing and building is often more, the payback for owning and operating a high-performance building is typically 5 years or less. Since employee salary costs are typically ten times the cost of energy and operating costs of a building, paybacks may be much less when the increased productivity and lower absenteeism often associated with working in a high-performance building are considered.

The "Green Building" movement has brought the MER to the forefront within the building design team by emphasizing skills in Building Information and Energy Modeling. The specialized knowledge of the MER is critically important to the success of the high-performance project as IAQ, energy, acoustical quality, building security/safety, and environmental perspectives are constantly evaluated.

N. Specifications

With the release of MasterFormat 2004 Edition, the A/E community, constructors, manufacturers, and owners have an entirely new organizational structure for preparing project manual content. The old Division 1-16 specification system has been completely replaced by a system that has 2 main Groups, 5 Subgroups, and 50 total Divisions.

The MER is significantly impacted by this change as the familiar Division 15 - Mechanical does not exist anymore. The same can be said for the old Division 16 - Electrical. Plumbing, mechanical, and electrical systems for facilities have been organized into a new Group titled Specifications and a new Subgroup titled Facility Services. An excerpt from MasterFormat 2004 Edition showing the facility oriented content is organized as follows:

Facility Services Subgroup:
  • Division 20 - (Future)
  • Division 21 - Fire Protection
  • Division 22 - Plumbing
  • Division 23 - Heating, Ventilating, and Air-Conditioning (HVAC)
  • Division 24 - (Future)
  • Division 25 - Integrated Automation
  • Division 26 - Electrical
  • Division 27 - Communications
  • Division 28 - Electronic Safety and Security
  • Division 29 - (Future)

(Source: MasterFormat 2004 Edition, CSI, 2004)

O. Building Health and Safety—Extraordinary Incidents

The concept of "extraordinary incidents" creates a paradigm shift in thinking for the MER and the resulting approach to facility design. Events such as war, terrorism, accident, or natural disaster need to be considered while planning for the occupant safety and protection of basic air, water, and food sources in the built environment.

The owner and design team now must consider and evaluate levels of risk, vulnerability, and acceptable vulnerability. Risk and vulnerability vary depending on the type of facility, function, accessibility, and location. Risk management techniques, which have not been a traditional part of HVAC&R design logic, must now be employed to determine potential compromise issues and to identify measured design solution responses. Theses issues are discussed in the document Risk Management Guidance for Health, Safety, and Environmental Security under Extraordinary Incidents, published by ASHRAE in 2003.

Extraordinary incident design response will have significant impact on building system design, construction, and operation. Consider the following points:

  • Interdependence of building systems must be understood so that the relationships of impacts can be planned for once any one system fails.
  • The extent and cost of redundant and backup systems needs to be determined.
  • The health and comfort of occupants should not be compromised at the expense of addressing vulnerability.
  • Application of high efficiency particulate filtration (MERV 14 or greater), gas and vapor removal technology, and UV light treatment can provide significant levels of protection. Risk assessment and economic analysis will determine the extent to how extensive this response can be implemented.
  • Outdoor air intakes need to be strategically located to minimize potential intake of airborne biological contaminants.
  • Building envelopes need to be designed with appropriate air/moisture barriers and positive building pressure control provisions to minimize infiltration of airborne biological contaminants.
  • HVAC control sequences of operation need to be defined for normal and extraordinary events. Infrastructure must be in place to provide transitions between operating modes.
  • Commissioning becomes a critical event now. The proper operation of equipment during an extraordinary event must be verified and understood.

Relevant Codes and Standards

  • Air-Conditioning and Refrigeration Institute (ARI)
    • ARI Standard 260-2001: Sound Rating of Ducted Air Moving and Conditioning Equipment
    • ARI Standard 300-2000: Sound Rating and Sound Transmission Loss of Packaged Terminal Equipment
    • ARI Standard 350-2000: Sound Rating and Non-Ducted Indoor Air-Conditioning Equipment
    • ARI Standard 410-2001: Forced-Circulation and Air-Cooling and Air-Heating Coils
    • ARI Standard 430-1999: Central Station Air Handling Units
    • ARI Standard 550-2003: Standard or Water Chilling Packages Using the Vapor Compression Cycle
    • ARI Standard 880-1998: Air Terminals
    • ARI Standard 885-1998: Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets
    • ARI Standard 890-2001: Rating of Air Diffusers and Air Diffuser Assemblies
  • Air Movement and Control Association (AMCA)
    • AMCA Standard 99-0021-01: The Fan Laws
    • AMCA Standard 210-99: Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
    • AMCA Standard 300-05: Reverberant Room Method for Sound Testing of Fans
    • AMCA Standard 301-05: Methods for Calculating Fan Sound Ratings from Laboratory Test Data
    • AMCA Standard 330-97: Laboratory Methods of Testing to Determine the Sound Power in a Duct
    • AMCA Standard 500-D-98: Laboratory Methods of Testing Dampers for Rating
    • AMCA Standard 500-L-99: Laboratory Methods of Testing Louvers for Rating
  • American National Standards Institute (ANSI)
    • ANSI S12.60-2002: Acoustical Performance Criteria, Design Requirements and Guidelines for Schools
  • American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE)
    • ASHRAE Standard 15-2004: Safety Standard for Refrigeration Systems
    • ASHRAE Standard 15 Users Manual
    • ASHRAE Standard 34-2004: Designation and Safety Classification of Refrigerants
    • ASHRAE Standard 52.2-1999: Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size
    • ASHRAE Standard 55-2004: Thermal Environmental Conditions for Human Occupancy
    • ASHRAE Standard 62.1-2004: Ventilation for Acceptable Indoor Air Quality
    • ASHRAE Standard 62.1 Users Manual
    • ASHRAE Standard 90.1-2004: Energy Standard for Buildings Except Low-Rise Residential Buildings
    • ASHRAE Standard 90.1 Users Manual
    • ASHRAE Standard 126-2000: Method of Testing HVAC Air Ducts
    • ASHRAE Standard 135-2004: BACnet - A Data Communication Protocol for Building Automation and Control Networks
    • ASHRAE Standard 140-2004: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs
    • ASHRAE Standard 147-2002: Reducing the Release of Halogenated Refrigerants from Refrigerating and Air-Conditioning Equipment and Systems
  • International Code Council (ICC)
    • International Building Code, 2003
    • International Energy Conservation Code, 2003
    • International Fuel Gas Code, 2003
    • International Mechanical Code, 2003
  • National Fire Protection Association (NFPA)
    • NFPA 70: National Electrical Code
    • NFPA 90A: Standard for the Installation of Air Conditioning and Ventilating Systems
    • NFPA 101: Life Safety Code
    • NFPA 900: Building Energy Code
    • NFPA 5000: Building Construction and Safety Code

Major Resources

WBDG

Design Guidance

Building Types, Space Types, Design Objectives, Products and Systems: Building Envelope Design Guide, Unified Facility Guide Specifications (UFGS)

Project Management

Building Commissioning

Professional Associations/Organizations

Government Resources

Institutional Resources

Publications

Professional Associations/Organizations

  • Advanced Energy Design Guide for Small Office Buildings by ASHRAE, 2005. ISBN 1-931862-55-9
  • Air-Conditioning System Design Manual by H. Lorsch. ASHRAE, 1993. ISBN 1-883413-00-1
  • Application of Manufacturers' Sound Data by C. Ebbing, W. Blazier. ASHRAE, 1998. ISBN 1-883413-62-1
  • ARI Guideline V: Calculating the Efficiency of Energy Recovery Ventilation and its Effect on Efficiency and Sizing Building HVAC Systems ARI, 2003.
  • ARI Guideline W: Selecting, Sizing, & Specifying Packaged Air-to-Air Energy Recovery Ventilation Equipment by ARI, 2005.
  • AMCA Publication 200-95: Air Systems by AMCA, 1995.
  • AMCA Publication 201-02: Fans and Systems by AMCA, 2002.
  • AMCA Publication 501-03: Application Manual for Louvers by AMCA, 2003.
  • AMCA Publication 502-01: Damper Application Manual for Heating, Ventilating and Air-Conditioning by AMCA, 2001.
  • AMCA Publication 503-03: Fire, Ceiling (Radiation), Smoke and Fire/Smoke Dampers Application Manual by AMCA, 2003.
  • ASHRAE GreenGuide by D. Grumman. ASHRAE, 2005. ISBN 1-931862-41-9
  • ASHRAE Guideline 0: The Commissioning Process by ASHRAE, 2005. ISBN 1049-894X
  • ASHRAE Guideline 1: The HVAC Commissioning Process by ASHRAE, 1996. ISBN 1049-894X
  • ASHRAE Guideline 3: Guideline for Reducing Emission of Fully Halogenated Chlorofluorocarbon Refrigerants by ASHRAE, 1996. ISBN 1049-894X
  • ASHRAE Guideline 4: Preparation of Operating and Maintenance Documentation for Building Systems by ASHRAE, 1993. ISBN 1049-894X
  • ASHRAE Guideline 5: Commissioning Smoke Management Systems by ASHRAE, 2001. ISBN 1049-894X
  • ASHRAE Guideline 12: Minimizing the Risk of Legionellosis Associated with Building Water Systems by ASHRAE, 2000. ISBN 1049-894X
  • ASHRAE Guideline 13: Specifying Direct Digital Control Systems by ASHRAE, 2000.
  • ASHRAE Handbook—Fundamentals by ASHRAE, 2005. ISBN 1-931862-70-2 (I-P)
  • ASHRAE Handbook—HVAC Applications by ASHRAE, 2003. ISBN 1-931862-22-2 (I-P)
  • ASHRAE Handbook—HVAC Systems and Equipment by ASHRAE, 2004. ISBN 1-931862-47-8 (I-P)
  • ASHRAE Handbook—Refrigeration by ASHRAE, 2002. ISBN 1-931862-07-9 (I-P)
  • Building Energy and Environmental Modeling by CIBSE, 1998. ISBN 0-900953-8
  • Building Systems Analysis and Retrofit Manual by SMACNA, 1995.
  • Chiller Heat Recovery - Application Guide by C.B. Dorgan, R.J. Linder, C.E. Dorgan. ASHRAE, 1999, ISBN 1-883413-74-5
  • Cold Air Distribution Design Guide by A.T. Kirkpatrick, J.S. Ellison. ASHRAE, 1996. ISBN 1-883413-37-0
  • Commercial/Institutional Ground-Source Heat Pump Engineering Manual by ASHRAE, 1995. ISBN 1-883413-21-4
  • Commissioning Guideline by AABC, 2002. ISBN 0-910289-03-4
  • Cooling and Heating Load Calculation Principles by C.O. Pedersen, D.E. Fisher, J.D. Spitler, R.J. Liesen. ASHRAE, 1998. ISBN 1-883413-59-1
  • Datacom Equipment Power Trends and Cooling Applications by ASHRAE, TC 9.9 Mission Critical Facilities, 2005. ISBN 1-931862-65-6
  • Design Considerations for Datacom Equipment Centers by ASHRAE, TC 9.9 Mission Critical Facilities, 2005. ISBN 1-931862-94-X
  • Design Essentials for Refrigerated Storage Facilities by B.R. Becker, B.A. Fricke. ASHRAE, 2005. ISBN 1-931862-74-5
  • Design Guide for Cool Thermal Storage by J.S. Elleson, C.E. Dorgan. ASHRAE, 1993. ISBN 1-883413-07-9
  • Designer's Guide to Ceiling-Based Air Diffusion by B.A. Rock, D. Zhu. ASHRAE, 2002. ISBN 1-931862-11-7
  • Design Phase Commissioning Handbook by NEBB, 2005.
  • Energy Management Handbook by W.C. Turner. AEE, 2004. ISBN 0-88173-337-7
  • Ground Source Heat Pumps - Design of Geothermal Systems for Commercial and Institutional Buildings by S.P. Kavanaugh, K. Rafferty. ASHRAE, 1997. ISBN 1-883413-52-4
  • Guide to Energy Management by B.L. Capehart, W.C. Turner, W.J. Kennedy. AEE, 2003. ISBN 0-88173-421-7
  • Guidelines for Design and Construction of Hospital and Health Care Facilities by AIA, 2001. ISBN 1-57165-002-4
  • Energy Systems Analysis and Management by SMACNA, 1997.
  • Fuel Cells for Building Applications by M.W. Ellis. ASHRAE, 2002. ISBN 1-931862-03-6
  • Handbook of Energy Engineering by A. Thumann, D.P. Mehta. AEE, 2001. ISBN 0-88173-347-4
  • Handbook of Ventilation for Contaminant Control by H.J. McDermott. ACGIH, 2001. ISBN 1-882417-38-0
  • Heating, Ventilating, and Air Conditioning: Analysis and Design by F.C. McQuiston, J.D. Parker, J.D. Spuler. ACGIH, 2004. ISBN 0-471-47015-5
  • Humidity Control Design Guide by L. Harriman, G. Brundett, R. Kittler. ASHRAE, 2001. ISBN 1-883413-98-2
  • HVAC Design Guide for Tall Commercial Buildings by D.E. Ross. ASHRAE, 2004. ISBN 1-931862-45-1
  • HVAC Design Manual for Hospitals and Clinics by ASHRAE, 2003. ISBN 1-931862-26-5
  • HVAC Simplified by S. Kavanaugh. ASHRAE, 2006. ISBN 1-931862-97-4
  • HVAC Systems - Applications by SMACNA, 1987.
  • HVAC Systems - Commissioning by SMACNA, 1994.
  • HVAC Systems - Duct Design by SMACNA, 1990.
  • HVAC Systems - Testing, Adjusting, and Balancing by SMACNA, 1990.
  • IAQ Guidelines for Occupied Buildings under Construction by SMACNA, 1995.
  • Indoor Air Quality - A Systems Approach by SMACNA, 1998.
  • Indoor Air Quality Standards of Performance - Application Guide by C.B. Dorgan, R.J. Linder, C.E. Dorgan. ASHRAE, 1999. ISBN 1-883413-77-X
  • Industrial Ventilation: A Manual of Recommended Practice by ACGIH, 2004. ISBN 1-882417-52-6
  • Laboratory Design Guide by C.B. Dorgan, I.B.D. McIntosh, C.E. Dorgan. ASHRAE, 2001. ISBN 1-883413-97-4
  • LEED-EB Reference Guide 2.0, USGBC, 2005. ISBN 1-932444-02-5
  • LEED-NC Reference Guide 2.2, USGBC, ISBN 1-932444-04-1
  • Managing Indoor Air Quality by S.J. Hansen, H.E. Burroughs. AEE, 2004. ISBN 0-88173-440-3
  • MasterFormat 2004 Edition by CSI, 2004. ISBN 0-9762399-0-6
  • Mixed Mode Ventilation by CIBSE, 2000. ISBN 1-903287-01-4
  • NAFA Guide to Air Filtration by NAFA, 2001. ISBN 1-884152-00-7
  • Natural Ventilation in Non-Domestic Buildings by CIBSE, 1997. ISBN 0-900953-77-2
  • Practical Guide to Noise and Vibration Control for HVAC Systems by M.E. Schaffer. ASHRAE, 1991. ISBN 1-883413-04-4
  • Practical Guide to Seismic Restraint by J.R. Tauby, R. Lloyd, T. Noce, J. Tunnissen. ASHRAE, 1999. ISBN 1-883413-78-8
  • Principles of Heating Ventilating and Air-Conditioning by R.H. Howell, H.J. Sauer, Jr., W.J. Coad. ASHRAE, 1998. ISBN 1-883413-56-7
  • Principles of Smoke Management by J.H. Klote, J.A. Milke. ASHRAE, 2002. ISBN 1-883413-99-0
  • Psychrometrics - Theory and Practice by ASHRAE, 1996. ISBN 1-883413-39-7
  • Small-Scale Combined Heat and Power for Buildings by CIBSE, 1999. ISBN 0-900953-92-6
  • Smoke Control Provisions of the 2000 IBC by D.H. Evans, J.H. Klote. ICC, 2003. ISBN 1-58001-107-1
  • Steam Distribution Systems Handbook by J.F. McCauley. AEE, 2000. ISBN 0-88173-303-2
  • The Project Resource Manual - CSI Manual of Practice by CSI, 2004. ISBN 0-071370-04-8
  • The Steam Trap Handbook by J.F. McCauley. , AEE, 1995. ISBN 0-88173-187-0
  • Thermal Guidelines for Data Processing Environments by ASHRAE, TC 9.9 Mission Critical Facilities, 2004. ISBN 1-931862-43-5
  • Underfloor Air Distribution Design Guide by F.S. Bauman, A. Daly. ASHRAE, 2003. ISBN 1-931862-21-4

Industry Manufacturers

  • Acoustics in Air Conditioning by The Trane Company
  • Air Conditioning Manual by The Trane Company, 2004.
  • Air-to-Air Energy Recovery in HVAC Systems by The Trane Company, 2002.
  • Basic System Control and Valve Sizing Procedures by ITT Bell and Gossett, 2003.
  • Building Pressurization Control by The Trane Company
  • Chiller Plant Design, McQuay International, 2002.
  • Cooling Tower Pumping and Piping by ITT Bell and Gossett, 2003.
  • CTI Manual, Cooling Technologies Institute
  • Dehumidification in HVAC Systems by The Trane Company
  • Designing an "IAQ"-Ready Air Handling System by The Trane Company
  • Designing Dedicated Outside Air Systems by The Trane Company, 2003.
  • Equipment Room Piping Practice by ITT Bell and Gossett, 2003.
  • Fans and Their Application in Air Conditioning by The Trane Company
  • Geothermal Heat Pump Design Manual by McQuay International, 2002.
  • Handbook of Air Conditioning Design by Carrier Corporation. McGraw-Hill, Inc., 1965.
  • Heat Exchangers Application and Installation by ITT Bell and Gossett, 2003.
  • Humidification Handbook by DRI-STEEM Humidifier Company, 1998.
  • HVAC Acoustic Fundamentals by McQuay International, 2004.
  • Managing Building Moisture by The Trane Company, 1998.
  • Multiple Chiller System Design and Control by The Trane Company, 2000.
  • Optimal Air Design Manual by McQuay International, 2002.
  • Parallel and Series Pump Application by ITT Bell and Gossett, 2003.
  • Pressure Drop Calculations in Hydronic Systems by ITT Bell and Gossett, 2003.
  • Primary Secondary Pumping Application Manual by ITT Bell and Gossett, 2003.
  • Refrigerant Application Guide by McQuay International, 2002.
  • Refrigerating Systems and Machinery Rooms: ASHRAE Standard 15 by The Trane Company, 2005
  • Rooftop/VAV Design Manual by The Trane Company
  • School HVAC Design Manual by McQuay International, 2001.
  • Self-Contained/VAV System Design by The Trane Company
  • Sizing Cooling Tower Pumps and Piping by ITT Bell and Gossett, 2004.
  • The Dehumidification Handbook by Munters Cargocaire, 1990.
  • Trane Reciprocating Refrigeration Manual by The Trane Company, 1997.
  • Variable Air Volume Duct Design by The Trane Company
  • Waterside Heat Recovery by The Trane Company
  • Water Source Heat Pump System Design by The Trane Company

Government

  • Building Air Quality: A Guide for Building Owners and Facility Managers by EPA, 1991.
  • Energy Management for Motor Driven Systems by DOE/EERE, 2000.
  • Energy Star Buildings Manual by EPA
  • Greening Federal Facilities by DOE
  • Improving Compressed Air System Performance: A Sourcebook for Industry by DOE/EERE, 2003.
  • Improving Fan System Performance: A Sourcebook for Industry by DOE/EERE, 2003.
  • Improving Pumping System Performance: A Sourcebook for Industry by DOE/EERE, 1999.
  • Improving Steam System Performance: A Sourcebook for Industry by DOE/EERE, 2004.
  • Introduction to Indoor Air Quality - A Reference Manual by EPA, 1991.

General

  • Handbook of Air-Conditioning and Refrigeration by S.K. Wang. McGraw-Hill, Inc., 1994. ISBN 0-07-068138-4
  • Handbook of HVAC Design by N.R. Grimm, R.C. Rosaler. McGraw-Hill, Inc., 1990. ISBN 0-07-024841-9
  • HVAC Design Criteria, Options, Selection by W.H. Rowe III. R.S. Means Company, Inc., 1994. ISBN 0-87629-347-X
  • HVAC Systems Evaluation by H.R. Colen. R.S. Means Company, Inc., 1990. ISBN 0-87629-182-5
  • Hydronic System Design and Operation by E.G. Hansen. McGraw-Hill, Inc., 1985. ISBN 0-07-026065-6
  • Noise Control in Buildings by C.M. Harris. McGraw-Hill, Inc., 1994. ISBN 0-07-028887-8
  • Preventing Indoor Air Quality Problems in Hot, Humid Climates: Design and Construction Guides by J.D. Colen, G. DuBose. CH2MHILL/Disney Development Corporation, 1996. ISBN 0-87629-182-5

Periodicals

  • Professional Associations/Organizations
    • ASHRAE Journal, ASHRAE
    • Energy Engineering, AEE
    • IAQ Applications, ASHRAE
    • Insulation Outlook, NIA
    • Strategic Planning for Energy and the Environment, AEE
  • General
    • Building Design & Construction, Reed Business Information
    • Consulting-Specifying Engineer, Reed Business Information
    • Energy and Power Management, BNP Media
    • Engineered Systems, BNP Media
    • Environmental Design + Construction, BNP Media
    • HPAC Engineering, Penton
    • Plant Engineering, Reed Business Information
    • PM Engineer, BNP Media

Design and Analysis Tools

Professional Associations/Organizations

  • 3E Plus, NAIMA
  • ASHRAE Moisture Load Calculator, ASHRAE
  • ASHRAE Thermal Comfort Program, ASHRAE
  • Psychrometric Analysis CD, ASHRAE

Industry Manufacturers

  • Acoustic Analyzer, McQuay International
  • Block Load for Windows, Carrier Corporation
  • Energy Analyzer, McQuay International
  • Engineering Economic Analysis, Carrier Corporation
  • HAP (Hourly Analysis Program), Carrier Corporation
  • Refrigerant Piping Analysis, Carrier Corporation
  • System Analyzer, The Trane Company
  • System Design Loads, Carrier Corporation
  • System Syzer, ITT Bell and Gossett
  • TAP (Trane Acoustics Program), The Trane Company
  • TRACE 700, The Trane Company
  • TRACE 700 Chiller Plant Analyzer, The Trane Company
  • TRACE 700 Load Design, The Trane Company
  • Trane Pipe Designer, The Trane Company
  • VariTrane Duct Designer, The Trane Company

Government

  • AIRMaster+, DOE/EERE
  • BDA (Building Design Advisor), DOE/LBNL
  • BLCC (Building Life Cycle Cost), NIST
  • Chilled Water System Analysis Tool (CWSAT), DOE/EERE
  • Combined Heat and Power Application Tool (CHPT), DOE/EERE
  • COMcheck-EZ, DOE/EERE
  • DOE-2, DOE
  • ENERGY-10, DOE/NREL
  • EnergyPlus, DOE
  • Fan Assessment Tool (FSAT), DOE/EERE
  • FEDS (The Facility Energy Decision System), DOE/PNNL
  • IAQ Building Education and Assessment Tool (I-BEAM), EPA
  • MotorMaster+, DOE/EERE
  • NOx and Energy Assessment Tool (NxEAT), DOE/EERE
  • Pumping System Assessment Tool 2004 (PSAT), DOE/EERE
  • QuikChill, EPA
  • QuikFan, EPA
  • Steam System Tool Suite, DOE/EERE

General

  • BLAST (Building Loads Analysis and System Thermodynamics), University of Illinois
  • Design Advisor, Massachusetts Institute of Technology
  • DUCTSIZE, Elite Software
  • EZDOE, Elite Software
  • HVAC Solution—Professional, HVAC Solution Inc.

Training

Professional Associations/Organizations

  • American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
    • Self-Directed Learning Courses
    • Professional Development Seminars
    • Short Courses
    • eLearning Modules
  • Construction Specification Institute
    • In-House Training

Industry Manufacturers

  • The Trane Company
    • Satellite Broadcast DVD/VHS
    • Air-Conditioning Clinics
  • ITT Bell and Gossett
    • Little Red Schoolhouse

Government

  • U.S. Department of Energy
    • Federal Energy Management Program

Institutional

  • North Carolina State University
    • Industrial Extension Service Classroom Courses
  • University of Wisconsin-Madison
    • College of Engineering—Dept. of Engineering Professional Development